一、问题
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
1️⃣示例 1:输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
2️⃣示例 2:输入:nums = [1]
输出:1
3️⃣示例 3:输入:nums = [0]
输出:0
4️⃣示例 4:输入:nums = [-1]
输出:-1
5️⃣示例 5:输入:nums = [-100000]
输出:-100000
提示:
- 1 <= nums.length <= 3 * 10^4
- -10^5 <= nums[i] <= 10^5
进阶:如果已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
二、解答
1️⃣方法一:动态规划
假设 nums 数组的长度是 n,下标从 0 到 n-1。用 f(i) 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然要求的答案就是:因此只需要求出每个位置的 f(i),然后返回 f 数组中的最大值即可。那么如何求 f(i) 呢?可以考虑 nums[i] 单独成为一段还是加入 f(i−1) 对应的那一段,这取决于 nums[i] 和 f(i−1)+nums[i] 的大小,希望获得一个比较大的,于是可以写出这样的动态规划转移方程:f(i)=max{f(i−1)+nums[i],nums[i]}
不难给出一个时间复杂度 O(n)、空间复杂度 O(n) 的实现,即用一个 f 数组来保存 f(i) 的值,用一个循环求出所有 f(i)。考虑到 f(i) 只和 f(i−1) 相关,于是可以只用一个变量 pre 来维护对于当前 f(i) 的 f(i−1) 的值是多少,从而让空间复杂度降低到 O(1),这有点类似「滚动数组」的思想。
public int maxSubArray(int[] nums) {
int pre = 0, maxAns = nums[0];
for (int x : nums) {
pre = Math.max(pre + x, x);
maxAns = Math.max(maxAns, pre);
}
return maxAns;
}
①时间复杂度:O(n),其中 n 为 nums 数组的长度。只需要遍历一遍数组即可求得答案。
②空间复杂度:O(1)。只需要常数空间存放若干变量。
2️⃣方法二:分治
这个分治方法类似于「线段树求解最长公共上升子序列问题」的 pushUp 操作。定义一个操作 get(a, l, r) 表示查询 a 序列 [l,r] 区间内的最大子段和,那么最终要求的答案就是 get(nums, 0, nums.size() - 1)。如何分治实现这个操作呢?对于一个区间 [l,r],我们取 m=[ l+r/2],对区间 [l,m] 和 [m+1,r] 分治求解。当递归逐层深入直到区间长度缩小为 1 的时候,递归「开始回升」。这个时候考虑如何通过 [l,m] 区间的信息和 [m+1,r] 区间的信息合并成区间 [l,r] 的信息。最关键的两个问题是:
- 要维护区间的哪些信息呢?
- 如何合并这些信息呢?
对于一个区间 [l,r],可以维护四个量:
lSum 表示 [l,r] 内以 l 为左端点的最大子段和
rSum 表示 [l,r] 内以 r 为右端点的最大子段和
mSum 表示 [l,r] 内的最大子段和
iSum 表示 [l,r] 的区间和
以下简称 [l,m] 为 [l,r] 的「左子区间」,[m+1,r] 为 [l,r] 的「右子区间」。如何维护这些量呢(如何通过左右子区间的信息合并得到 [l,r] 的信息)?对于长度为 1 的区间 [i, i],四个量的值都和 nums[i] 相等。对于长度大于 1 的区间:
- 首先最好维护的是 iSum,区间 [l,r] 的 iSum 就等于「左子区间」的 iSum 加上「右子区间」的 iSum。
- 对于 [l,r] 的 lSum,存在两种可能,它要么等于「左子区间」的 lSum,要么等于「左子区间」的 iSum 加上「右子区间」的 lSum,二者取大。
- 对于 [l,r] 的 rSum,同理,它要么等于「右子区间」的 rSum,要么等于「右子区间」的 iSum 加上「左子区间」的 rSum,二者取大。
- 当计算好上面的三个量之后,就很好计算 [l,r] 的 mSum 了。可以考虑 [l,r] 的 mSum 对应的区间是否跨越 m——它可能不跨越 m,也就是说 [l,r] 的 mSum 可能是「左子区间」的 mSum 和 「右子区间」的 mSum 中的一个;它也可能跨越 m,可能是「左子区间」的 rSum 和 「右子区间」的 lSum 求和。三者取大。
这样问题就得到了解决。
class Solution {
public class Status {
public int lSum, rSum, mSum, iSum;
public Status(int lSum, int rSum, int mSum, int iSum) {
this.lSum = lSum;
this.rSum = rSum;
this.mSum = mSum;
this.iSum = iSum;
}
}
public int maxSubArray(int[] nums) {
return getInfo(nums, 0, nums.length - 1).mSum;
}
public Status getInfo(int[] a, int l, int r) {
if (l == r) {
return new Status(a[l], a[l], a[l], a[l]);
}
int m = (l + r) >> 1;
Status lSub = getInfo(a, l, m);
Status rSub = getInfo(a, m + 1, r);
return pushUp(lSub, rSub);
}
public Status pushUp(Status l, Status r) {
int iSum = l.iSum + r.iSum;
int lSum = Math.max(l.lSum, l.iSum + r.lSum);
int rSum = Math.max(r.rSum, r.iSum + l.rSum);
int mSum = Math.max(Math.max(l.mSum, r.mSum), l.rSum + r.lSum);
return new Status(lSum, rSum, mSum, iSum);
}
}