WGCNA得到模块之后如何筛选模块里面的hub基因
原创 生信技能树
我在生信技能树多次写教程分享WGCNA的实战细节,见:
通常是介绍到,把输入的top5000 MAD的基因根据WGCNA算法划分为多个模块,然后不同模块都可以去和临床形状看相关性。
首先看样本性状和模块的关系
如下图,如下要看懂下面的图需要理解3个概念:
gene significance (GS) was defined as mediated p-value of each gene (GS = lgP) in the linear regression between gene expression and the clinical traits.
module eigengenes (MEs) were defined as the first principal component of each gene module and the expression of MEs was considered as a representative of all genes in a given module.
module significance (MS) were defined as the average GS of all the genes involved in the module
首先,每个模块都有一个MEs,模块的MEs能够代表模块本身去跟性状进行计算相关性(基于样本),这个相关性值就体现在了下面的热图里面:
可以很清楚的看到,疾病进展的3个阶段,都是有非常显著的模块与之相关。举个例子,假如我们现在关心的是phase1,那么就可以深入查看,我们全部模块里面的所有基因,跟我们的phase1这个性状的相关性系数。
可以看到,基本上就是等价于前面的模块基因集与性状特征的相关性热图。只不过是把其中一个性状,也就是phase1单独拿出来仔细看而已。
比如看black这个模块里面的基因, 这些基因在phase1这个性状里面的的GS值都比较高,意味着这个black模块跟phase1这个性状的MEs会比较高,对应前面的模块基因集与性状特征的相关性热图。
然后看基因和模块的关系
既然这个性状phase1有3个关联性比较好的模块,例子里面是 black, blue, turquoise, 那么就需要下游分析这3个模块里面的基因集。但是每个模块基因数量毕竟是太多,如下:
> as.data.frame(table(mergedColors)) mergedColors Freq1 black 1402 blue 5723 brown 4014 green 2375 greenyellow 746 grey 2037 magenta 858 pink 1039 purple 7610 red 19011 tan 6212 turquoise 259113 yellow 266
所以需要探索每个模块里面的基因,到底跟性状有什么样的关系,如何从模块里面继续挑选感兴趣的基因。
绘制如下 Module membership vs. gene significance 的图,然后挑选右上角的点所代表的基因即可。
这个策略被很多文章采用,比如发表在:Front. Oncol., 11 September 2018 | https://doi.org/10.3389/fonc.2018.00374的文章:
Based the cut-off criteria (|MM| > 0.8 and |GS| > 0.2), 42 genes with high connectivity in the clinical significant module were identified as hub genes.
可以看到,这个文章里面对GS的阈值设置的很低哦,具体一点是:
The connectivity of genes was measured by absolute value of the Pearson's correlation.
Genes with high within-module connectivity were considered as hub genes of the modules (cor.geneModuleMembership > 0.8).
Hub genes inside a given module tended to have a strong correlation with certain clinical trait, which was measured by absolute value of the Pearson's correlation (cor.geneTraitSignificance > 0.2).
再辅助生存分析,就可以进一步缩小基因范围啦
Among them, CCNB2, FBXO5, KIF4A, MCM10, and TPX2 were negatively associated with the overall survival and relapse free survival
为什么这篇文章是这样操作的呢,其实是WGCNA官网推荐的,因为Module membership (MM) is a measure of intra-modular connectivity.
那么connectivity到底是什么呢?
既然大家都是Module membership (MM) is a measure of intra-modular connectivity.所以筛选NM和GS值就好了,为什么还会有一个专门的connectivity呢?
就需要再去理解 connectivity 定义了,搜索到一个介绍:https://www.researchgate.net/post/How_should_I_interpret_the_connectivity_measures_kTotal_kWithin_kOut_kDiff_in_WGCNA
- kTotal - connectivity of the each gene based on its r-values to all other genes in the whole network
- kWithin - connectivity of the each gene within a single module based on its r-values to all other genes within the same module
- and 4) kOut and kDiff mathematical derivatives from 1) and 2)
WGCNA官网说明很简单:The function intramodularConnectivity computes the whole network connectivity kTotal, the within module connectivity kWithin, kOut=kTotal-kWithin, and kDiff=kIn-kOut=2*kIN-kTotal
因为这个概念很少有人知道,所以大家使用WGCNA把基因划分好模块之后,通常并不是计算这个指标,但是WGCNA官网推荐使用这个指标来挑选模块内部最重要的基因!
Finding genes with high gene significance and high intramodular connectivity in interesting modules