高维数据异常检测
背景
在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积) 会以指数级别增长,使数据变得稀疏,这便是维度诅咒的难题。维度诅咒不止给异常检测带来了挑战,对距离的计算,聚类都带来了难题。例如基于邻近度的方法是在所有维度使用距离函数来定义局部性,但是,在高维空间中,所有点对的距离几乎都是相等的(距离集中),这使得一些基于距离的方法失效。在高维场景下,一个常用的方法是子空间方法。
集成是子空间思想中常用的方法之一,可以有效提高数据挖掘算法精度。集成方法将多个算法或多个基检测器的输出结合起来。其基本思想是一些算法在某些子集上表现很好,一些算法在其他子集上表现很好,然后集成起来使得输出更加鲁棒。集成方法与基于子空间方法有着天然的相似性,子空间与不同的点集相关,而集成方法使用基检测器来探索不同维度的子集,将这些基学习器集合起来。
介绍两种常用的集成方法:
Feature bagging
Isolation Forests
孤立森林(Isolation Forest)算法是周志华教授等人于2008年提出的异常检测算法,是机器学习中少见的专门针对异常检测设计的算法之一,方法因为该算法时间效率高,能有效处理高维数据和海量数据,无须标注样本,在工业界应用广泛。
孤立森林属于非参数和无监督的算法,既不需要定义数学模型也不需要训练数据有标签。孤立森林查找孤立点的策略非常高效。假设我们用一个随机超平面来切割数据空间,切一次可以生成两个子空间。然后我们继续用随机超平面来切割每个子空间并循环,直到每个子空间只有一个数据点为止。直观上来讲,那些具有高密度的簇需要被切很多次才会将其分离,而那些低密度的点很快就被单独分配到一个子空间了。孤立森林认为这些很快被孤立的点就是异常点。
怎么来切这个数据空间是孤立森林的核心思想。因为切割是随机的,为了结果的可靠性,要用集成(ensemble)的方法来得到一个收敛值,即反复从头开始切,平均每次切的结果。孤立森林由t棵孤立的数组成,每棵树都是一个随机二叉树,也就是说对于树中的每个节点,要么有两个子节点,要么一个子节点都没有。树的构造方法和随机森林(random forests)中树的构造方法有些类似。流程如下:
从训练数据中随机选择一个样本子集,放入树的根节点;
随机指定一个属性,随机产生一个切割点V,即属性A的最大值和最小值之间的某个数;
根据属性A对每个样本分类,把A小于V的样本放在当前节点的左孩子中,大于等于V的样本放在右孩子中,这样就形成了2个子空间;
在孩子节点中递归步骤2和3,不断地构造左孩子和右孩子,直到子节点中只有一个数据,或树的高度达到了限定高度。
获得t棵树之后,孤立森林的训练就结束,就可以用生成的孤立森林来评估测试数据。
孤立森林检测异常的假设是:异常点一般都是非常稀有的,在树中会很快被划分到叶子节点,因此可以用叶子节点到根节点的路径长度来判断一条记录是否是异常的。和随机森林类似,孤立森林也是采用构造好的所有树的平均结果形成最终结果的。在训练时,每棵树的训练样本是随机抽样的。从孤立森林的树的构造过程看,它不需要知道样本的标签,而是通过阈值来判断样本是否异常。因为异常点的路径比较短,正常点的路径比较长,孤立森林根据路径长度来估计每个样本点的异常程度。
孤立森林也是一种基于子空间的方法,不同的分支对应于数据的不同局部子空间区域,较小的路径对应于孤立子空间的低维
总结
1.bagging通过每次选择不同的数据或特征构造不同模型,避免偶尔出现的过拟合现象,可以降低方差。
2.孤立森林的优势在于:
- 计算成本相比基于距离或基于密度的算法更小。
- 具有线性的时间复杂度。
- 在处理大数据集上有优势。
- 孤立森林不适用于超高维数据,因为鼓励森林每次都是随机选取维度,如果维度过高,则会存在过多噪音。