异常检测(五)——高维异常

1 引言

在实际场景中,很多数据集都是多维度的。随着维度的增加,数据空间的大小(体积)会以指数级别增长,使数据变得稀疏,这便是维度诅咒的难题。维度诅咒不止给异常检测带来了挑战,对距离的计算,聚类都带来了难题。例如基于邻近度的方法是在所有维度使用距离函数来定义局部性,但是,在高维空间中,所有点对的距离几乎都是相等的(距离集中),这使得一些基于距离的方法失效。在高维场景下,一个常用的方法是子空间方法。

集成是子空间思想中常用的方法之一,可以有效提高数据挖掘算法精度。集成方法将多个算法或多个基检测器的输出结合起来。其基本思想是一些算法在某些子集上表现很好,一些算法在其他子集上表现很好,然后集成起来使得输出更加鲁棒。集成方法与基于子空间方法有着天然的相似性,子空间与不同的点集相关,而集成方法使用基检测器来探索不同维度的子集,将这些基学习器集合起来。

下面来介绍两种常见的集成方法:

2.Featrue Bagging

Feature Bagging, 基本思想与bagging相似 , 只是对feature。 feature bagging属于集成方法的一种,集成方法的设计有以下两个主要步骤:
1.选择基检测器。 这些基本检测器可以彼此完全不同。或不同的参数设置,或采用不同的子数据集。Feature bagging常用的lof算法为基算法。
下图是feature bagging的通用算法:

1

2.分数标准化和组合方式:不同检测器可能会在不同的尺度上产生分数。例如,平均k近邻检测器会输出原始距离分数,而LOF算法会输出归一化值。另外,尽管一般情况是输出较大的异常值分数,但有些检测器会输出较小的异常值分数。因此,需要将来自各种检测器的分数转换成可以有意义的组合的归一化值。分数标准化之后,还要选择一个组合函数将不同基本检测器的得分进行组合,最常见的选择包括平均和最大化组合函数。
下图是两个feature bagging两个不同的组合分数方法:

广度优先

累计求和

基探测器的设计及其组合方法都取决于特定集成方法的特定目标。很多时候,我们无法得知数据的原始分布,只能通过部分数据去学习。除此以外,算法本身也可能存在一定问题使得其无法学习到数据完整的信息。这些问题造成的误差通常分为偏差和方差两种。

方差:是指算法输出结果与算法输出期望之间的误差,描述模型的离散程度,数据波动性。

偏差:是指预测值与真实值之间的差距。即使在离群点检测问题中没有可用的基本真值

3.Isolation Forests

孤立森林(Isolation Forest)算法是周志华教授等人于2008年提出的异常检测算法,是机器学习中少见的专门针对异常检测设计的算法之一,方法因为该算法时间效率高,能有效处理高维数据和海量数据,无须标注样本,在工业界应用广泛。

孤立森林属于非参数和无监督的算法,既不需要定义数学模型也不需要训练数据有标签。孤立森林查找孤立点的策略非常高效。假设我们用一个随机超平面来切割数据空间,切一次可以生成两个子空间。然后我们继续用随机超平面来切割每个子空间并循环,直到每个子空间只有一个数据点为止。直观上来讲,那些具有高密度的簇需要被切很多次才会将其分离,而那些低密度的点很快就被单独分配到一个子空间了。孤立森林认为这些很快被孤立的点就是异常点。

用四个样本做简单直观的理解,d是最早被孤立出来的,所以d最有可能是异常。

4

怎么来切这个数据空间是孤立森林的核心思想。因为切割是随机的,为了结果的可靠性,要用集成(ensemble)的方法来得到一个收敛值,即反复从头开始切,平均每次切的结果。孤立森林由t棵孤立的数组成,每棵树都是一个随机二叉树,也就是说对于树中的每个节点,要么有两个孩子节点,要么一个孩子节点都没有。树的构造方法和随机森林(random forests)中树的构造方法有些类似。流程如下:

5

获得t棵树之后,孤立森林的训练就结束,就可以用生成的孤立森林来评估测试数据。

孤立森林检测异常的假设是:异常点一般都是非常稀有的,在树中会很快被划分到叶子节点,因此可以用叶子节点到根节点的路径长度来判断一条记录是否是异常的。和随机森林类似,孤立森林也是采用构造好的所有树的平均结果形成最终结果的。在训练时,每棵树的训练样本是随机抽样的。从孤立森林的树的构造过程看,它不需要知道样本的标签,而是通过阈值来判断样本是否异常。因为异常点的路径比较短,正常点的路径比较长,孤立森林根据路径长度来估计每个样本点的异常程度。

路径长度计算方法:


6

孤立森林也是一种基于子空间的方法,不同的分支对应于数据的不同局部子空间区域,较小的路径对应于孤立子空间的低维

4.总结

1.feature bagging可以降低方差

2.孤立森林的优势在于:

计算成本相比基于距离或基于密度的算法更小。
具有线性的时间复杂度。
在处理大数据集上有优势。
孤立森林不适用于超高维数据,因为鼓励森林每次都是随机选取维度,如果维度过高,则会存在过多噪音。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容

  • Task01: 今天开始了异常值学习的第一天。我在本科阶段学习过一些关于高维数据流故障诊断的知识。当时主要学习的是...
    Jeremy__Wang阅读 2,309评论 0 0
  • 1异常检测概述 2异常检测常用方法 传统方法 基于传统统计学方法 统计学方法对数据的正常性做出假定。它们假定正常的...
    许志辉Albert阅读 1,313评论 0 0
  • 1、什么是异常检测 异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行...
    Q_cy阅读 869评论 0 0
  • 参考datawhale开源组织:https://github.com/datawhalechina/team-le...
    YANJINING阅读 410评论 0 0
  • 1、什么是异常检测 异常检测(Outlier Detection),顾名思义,是识别与正常数据不同的数据,与预期行...
    noob鸽阅读 470评论 0 0