GSEA富集分析原理

GSEA定义的富集分数计算原理

Gene Set Enrichment Analysis (基因集富集分析) 主要用来评估一个给定基因集内的基因与表型相关性强度,从而判断其对表型的贡献。

根据计算基因与表型的关联度(正相关变化或负相关变化),然后判断基因集内的基因是否富集在表型相关度排序基因表的前部或者后部。从而反映基因集内基因的协同变化是否与表型关联。在表型关联研究中,GSEA从基因集的富集角度出发,理论上更容易纳入变化水平较低但也与表型协同变化的基因,尤其是差异倍数不太大的基因集。

基因-表型-相关性顺序表(L)

富集得分ES, enrichment score ,该指标反映了基因集(S)内成员在基因-表型-相关性顺序表(L)中位于两端的富集程度。计算方式,从顺序表(L)的上的第一个基因开始,当遇到S内成员时加上统计值,否者降低统计值。ES分数记录为统计值最大的峰值,ES大于零表示在L的左端富集,ES小于零表示在L的右端富集。ES的计算非常类似 Kolmogorov–Smirnov test 统计量 D,反映了基因集(S)与其它基因的分布差异,如果基因集(S)内成员在一端极度富集,经验累积分布函数将在一段快速提升获得一个很大的 eCDF差值 D,从而反映了基因集(S)的两端富集情况。

runing ES step

ES显著性检验 Permutation Test,大量构造与观测基因集(s)等大的随机基因集,这些随机构造的结果大概率是与研究表型不具有相关性的结果,随机构造集内的成员在相关性顺序表(L)中的分布应呈接近均匀分布的状态,从而基于Permutation test 生成判断 观测ES 的有效富集显著性分数。基本过程就是打乱样本的表型标签(也可以随机抽取观测集),然后重新计算相关性顺序表(L)和ES得分(一般为执行1000次),然后估计观测ES的估计P-value(根据抽样ES的分布来估计),通常呈正态分布可计算 P_val = (大于观测ES的随机观测结果数)/ 1000(总测试次数)。当ES大于0并且具有统计学意义时,就可以说基因集S内基因相比其他基因表达上调。

NES,Normalized Enrichment Score,考虑了不同查询基因集的大小,将观测ES除以Permutation Test得到的所有 ES均值 计算得出NES。本质是考虑了不同基因集所代表的不同总体来源的观测ES的比较问题,将ES观测值转换为与总体背景下的ES均值的距离(类似方差距离的度量)来作为跨总体比较的结果。对于大于总体均值的ES观测值,NES应大于1。

\therefore 判断基因集有效贡献的标准为 |NES|>1, p-val<0.05, q-val<0.25




GSA、GSEA、ssGSEA、GSVA的算法原理及它们的联系与区别
Permutation Test 置换检验 | Public Library of Bioinformatics (plob.org)
一文掌握GSEA,超详细教程! - 知乎 (zhihu.com)
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles | PNAS
GSEA的统计学原理试讲 | 生信菜鸟团 (bio-info-trainee.com)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容