分治法-数组最大子序和

https://leetcode-cn.com/problems/maximum-subarray/solution/zui-da-zi-xu-he-by-leetcode-solution/
今日从零开始刷到求数组中的最大连续子序和,我的思路是动态规划,求带最后一位的最大连续子序和,最终对比找到最大值。

官方题解提到了另一种分治法,引申出线段树的概念
大致思想是 分段递归,求四个关键的参数进行对比求最大。

首先是数组的区间[l,r],其次取分治的中间点m,分成两段[l,m] 和 [m+1,r]
对于一个区间 [l,r],我们可以维护四个量:
lSum 表示 [l,r] 内以 l 为左端点的最大子段和
rSum 表示 [l,r] 内以 r 为右端点的最大子段和
mSum 表示 [l,r] 内的最大子段和
iSum 表示 [l,r] 的区间和

所以问题就变为,我要求[l,r]的mSum,那么这个数据只有两种情况,要么是最长子序段不跨m也就是
max { [l,m]的mSum , [m+1,r]的mSum };要么是跨m也就是 [l,m]的rSum + [m+1,r]的lSum。所以最后的实现也就变为递归,到最底的[l,l]长度为1,也就是四个关键参数都相等时。往上return最后得出[l,r]的四个关键参数,最后比较大小即可。

那么线段树又是什么?这里官方最后给了段题外话,如下:

题外话
「方法二」相较于「方法一」来说,时间复杂度相同,但是因为使用了递归,并且维护了四个信息的结构体,运行的时间略长,空间复杂度也不如方法一优秀,而且难以理解。那么这种方法存在的意义是什么呢?

对于这道题而言,确实是如此的。但是仔细观察「方法二」,它不仅可以解决区间[0,n−1],还可以用于解决任意的子区间[l,r] 的问题。如果我们把[0,n−1] 分治下去出现的所有子区间的信息都用堆式存储的方式记忆化下来,即建成一颗真正的树之后,我们就可以在 O(logn) 的时间内求到任意区间内的答案,我们甚至可以修改序列中的值,做一些简单的维护,之后仍然可以在 O(logn) 的时间内求到任意区间内的答案,对于大规模查询的情况下,这种方法的优势便体现了出来。这棵树就是上文提及的一种神奇的数据结构——线段树。

我的理解就是,这样维护的树结构,所有的查询都可以用接近一半的时间取获得答案,会快于O(n)的动态规划。但是这颗线段树的节点新增和删除都是需要重新计算关键参数的,维护起来比较麻烦,只能适用变更少,数值较为固定的场景、或可利用缓存结构提前计算,可接受一定程度延时性的场景

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容