OmicVerse: 解决整个转录组学分析的Python框架

2023年6月7日,来自北京科技大学,清华大学与中山大学的研究者在biorxiv上发布了一篇题为“OmicVerse: A single pipeline for exploring the entire transcriptome universe” 的研究工作。该框架的提出,解决了单细胞转录组学与bulk转录组学分析中不同算法的格式不一致,运算过慢以及可视化问题。除此之外,该框架还提出了一种名为“BulkTrajBlend”的单细胞插补算法,用于解决单细胞测序中由于技术限制(如通量,细胞类型)导致的细胞分化的中断问题。我是论文的第一作者。

代码仓库:https://github.com/Starlitnightly/omicverse/

框架教程:https://omicverse.readthedocs.io/en/latest/

论文地址:OmicVerse: A single pipeline for exploring the entire transcriptome universe

引言

omicverse是在我大三保研做Bulk RNA-seq时提出的,当时为了自己的方便,就把差异表达分析(DEG),加权基因共表达分析(WGCNA),通路富集分析(GSEA)等整合进了一个叫Pyomic的包中方便自己调用,当时的野心很大,想把整个组学分析都用Python来完成(笑)。现在博士一年级,也做了快两年的单细胞分析,中途用了很多包,但不同的包之间,对于格式的需求往往是不一样的,而且有的包本身并没有好好利用GPU的计算优势,并且大部分的包所作的图与CNS上的图差别还是比较大的。所以我就把当时的Pyomic给捡了起来,把我做分析用到的所有包都塞进了omicverse里面,统一了它们的输入输出,并对部分可以优化的算法进行了优化,以及给出了一些新的可视化函数来帮助研究人员呈现结果。可能你会想,这不就是一个整合的包吗?但其实不是。

  • 我通过大量的基准测试,以及相关的paper,整理出了一套最适的Python单细胞分析流程,Bulk RNA-seq分析流程与可视化。

  • 我提出了一种新的生物学算法“BulkTrajBlend”,解决了单细胞测序中由于通量限制导致的细胞不连续现象。

图1|omicverse的概述

Bulk RNA-seq

整个框架由三部分构成,分别是Bulk RNA-seq,singel cell RNA-seq以及Bulk2Single部分。omicverse提出了一套完整的Bulk RNA-seq分析流程,包括基因ID比对差异表达分析(ttest,wliconx,DESeq2)通路富集分析基因共表达模块分析。在Supplementary Note里面,我们通过阿尔茨海默症的RNA-seq数据演示了整个分析

Bulk RNA-seq分析教程:https://omicverse.readthedocs.io/en/latest/Tutorials-bulk/t_deseq2/

图2|Bulk RNA-seq的分析效果

single cell RNA-seq

对于单细胞分析,omicverse也提供了一套完整的分析框架,包括单细胞质控与预处理,细胞类型自动注释细胞分化轨迹推断亚群差异表达分析细胞通路打分AUCell药物反应预测细胞通讯分析。我们应用结直肠癌的单细胞数据来完成了分析的实验。

单细胞RNA-seq分析教程:https://omicverse.readthedocs.io/en/latest/Tutorials-single/t_cellanno/

图3|单细胞RNA-seq的分析效果
图4|单细胞RNA-seq的分析效果

scRNA-seq与scATAC-seq联合分析

在去年,来自北京大学的高歌课题组提出了一种名为GLUE的算法,将两个不同的组学层嵌入到一个低维空间中,文章发表在Nature Biotechnology。在2018年,多组学算法MOFA的提出解决了斑马鱼内胚层命运的分化问题,文章发表在Nature上。但MOFA受限于一个样本多个组学层,GLUE恰好可以解决不同组学层的整合问题,故我们将GLUE与MOFA的联合分析整合进了omicverse中。我们在Supplementary中应用阿尔兹海默症证明分析的可靠性。

多组学分析教程:https://omicverse.readthedocs.io/en/latest/Tutorials-single/t_mofa_glue/

图5|多组学整合效果

从Bulk RNA-seq生成Single RNA-seq

2022年,浙江大学范晓辉课题组提出了BulkSpace算法,该算法利用解卷积与深度随机森林模型解决了从Bulk RNA-seq生成空间转录组数据的问题。我们将该算法拆解成两个部分:bulk2single与single2spatial,并且我们改进了single2spatial部分,因为原作者是想用深度随机森林完成分类问题,我们改成了神经网络完成分类问题,充分利用了GPU加速。我们对比了优化前后的算法,分类与生成效果一致,同时速度大幅提升。我们在阿尔茨海默症和PDAC数据上给出了算法的分析框架。

Bulk2single分析教程:https://omicverse.readthedocs.io/en/latest/Tutorials-bulk2single/t_bulk2single/

图6|Bulk2single分析效果

结语

我个人很喜欢这项工作,它减少了我很多的代码量。在论文的最后部分我是这么写的。我希望构建一个基于Python的转录组学分析框架与生态,但仅凭我一人之力可能还有很多问题没有发现,欢迎对omicverse感兴趣的研究人员在github上面提相关的issue或者pr,帮助omicverse变得更好。

github地址:https://github.com/Starlitnightly/omicverse/

||| 我们的目标是在Python环境中创建一个适用于bulk/singel RNA-seq分析和优美可视化的生态系统。用户可以利用Python社区的机器学习模型和专业知识,使用单一编程语言进行全面的转录组分析。随着OmicVerse不断发展,我们预计会进行持续更新,引入新的算法、功能和模型。OmicVerse预计将受益于bulk/singel RNA-seq社区,促进新模型的原型开发,建立跨组学分析的标准,以及加强科学发现的流程。

参考文献:

[1] Zeng Z, Ma Y, Hu L, Xiong Y, Du H. OmicVerse: A single pipeline for exploring the entire transcriptome universe. Cold Spring Harbor Laboratory; 2023.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342

推荐阅读更多精彩内容