What is The Rule of Three?

以下内容转自stack overflow 问题What is The Rule of Three?

Problem

What does copying an object mean? What are the copy constructor and the copy assignment operator? When do I need to declare them myself? How can I prevent my objects from being copied?

Answer

Introduction

C++ treats variables of user-defined types with value semantics. This means that objects are implicitly copied in various contexts, and we should understand what "copying an object" actually means.

Let us consider a simple example:

class person
{
    std::string name;
    int age;
public:
    person(const std::string& name, int age) : name(name), age(age)
    {
    }
};
int main()
{
    person a("Bjarne Stroustrup", 60);
    person b(a);   // What happens here?
    b = a;         // And here?
}

Special member functions

What does it mean to copy a person object? The main function shows two distinct copying scenarios. The initialization person b(a); is performed by the copy constructor. Its job is to construct a fresh object based on the state of an existing object. The assignment b = a is performed by the copy assignment operator. Its job is generally a little more complicated, because the target object is already in some valid state that needs to be dealt with.

Since we declared neither the copy constructor nor the assignment operator (nor the destructor) ourselves, these are implicitly defined for us. Quote from the standard:

The [...] copy constructor and copy assignment operator, [...] and destructor are special member functions. [ Note: The implementation will implicitly declare these member functions for some class types when the program does not explicitly declare them. The implementation will implicitly define them if they are used. [...] end note ] [n3126.pdf section 12 §1]

By default, copying an object means copying its members:

The implicitly-defined copy constructor for a non-union class X performs a memberwise copy of its subobjects. [n3126.pdf section 12.8 §16]

The implicitly-defined copy assignment operator for a non-union class X performs memberwise copy assignment of its subobjects. [n3126.pdf section 12.8 §30]

Implicit definitions

The implicitly-defined special member functions for person look like this:

// 1. copy constructor
person(const person& that) : name(that.name), age(that.age)
{
}
// 2. copy assignment operator
person& operator=(const person& that)
{
    name = that.name;
    age = that.age;
    return *this;
}
// 3. destructor
~person()
{
}

Memberwise copying is exactly what we want in this case: name and age are copied, so we get a self-contained, independent person object. The implicitly-defined destructor is always empty. This is also fine in this case since we did not acquire any resources in the constructor. The members' destructors are implicitly called after the person destructor is finished:

After executing the body of the destructor and destroying any automatic objects allocated within the body, a destructor for class X calls the destructors for X's direct [...] members [n3126.pdf 12.4 §6]

Managing resources

So when should we declare those special member functions explicitly? When our class manages a resource, that is, when an object of the class is responsible for that resource. That usually means the resource is acquired in the constructor (or passed into the constructor) and released in the destructor.

Let us go back in time to pre-standard C++. There was no such thing as std::string, and programmers were in love with pointers. The person class might have looked like this:

class person
{
    char* name;
    int age;
public:
    // the constructor acquires a resource:
    // in this case, dynamic memory obtained via new[]
    person(const char* the_name, int the_age)
    {
        name = new char[strlen(the_name) + 1];
        strcpy(name, the_name);
        age = the_age;
    }
    // the destructor must release this resource via delete[]
    ~person()
    {
        delete[] name;
    }
};

Even today, people still write classes in this style and get into trouble: "I pushed a person into a vector and now I get crazy memory errors!" Remember that by default, copying an object means copying its members, but copying the name member merely copies a pointer, not the character array it points to! This has several unpleasant effects:

  1. Changes via a can be observed via b.
  2. Once b is destroyed, a.name is a dangling pointer.
  3. If a is destroyed, deleting the dangling pointer yields undefined behavior.
  4. Since the assignment does not take into account what name pointed to before the assignment, sooner or later you will get memory leaks all over the place.

Explicit definitions

Since memberwise copying does not have the desired effect, we must define the copy constructor and the copy assignment operator explicitly to make deep copies of the character array:

// 1. copy constructor
person(const person& that)
{
    name = new char[strlen(that.name) + 1];
    strcpy(name, that.name);
    age = that.age;
}
// 2. copy assignment operator
person& operator=(const person& that)
{
    if (this != &that)
    {
        delete[] name;
        // This is a dangerous point in the flow of execution!
        // We have temporarily invalidated the class invariants,
        // and the next statement might throw an exception,
        // leaving the object in an invalid state :(
        name = new char[strlen(that.name) + 1];
        strcpy(name, that.name);
        age = that.age;
    }
    return *this;
}

Note the difference between initialization and assignment: we must tear down the old state before assigning to name to prevent memory leaks. Also, we have to protect against self-assignment of the form x = x. Without that check, delete[] name would delete the array containing the source string, because when you write x = x, both this->name and that.name contain the same pointer.

Exception safety

Unfortunately, this solution will fail if new char[...] throws an exception due to memory exhaustion. One possible solution is to introduce a local variable and reorder the statements:

// 2. copy assignment operator
person& operator=(const person& that)
{
    char* local_name = new char[strlen(that.name) + 1];
    // If the above statement throws,
    // the object is still in the same state as before.
    // None of the following statements will throw an exception :)
    strcpy(local_name, that.name);
    delete[] name;
    name = local_name;
    age = that.age;
    return *this;
}

This also takes care of self-assignment without an explicit check. An even more robust solution to this problem is the copy-and-swap idiom, but I will not go into the details of exception safety here. I only mentioned exceptions to make the following point: Writing classes that manage resources is hard.

Noncopyable resources

Some resources cannot or should not be copied, such as file handles or mutexes. In that case, simply declare the copy constructor and copy assignment operator as private without giving a definition:

private:
    person(const person& that);
    person& operator=(const person& that);

Alternatively, you can inherit from boost::noncopyable or declare them as deleted (C++0x):

person(const person& that) = delete;
person& operator=(const person& that) = delete;

The rule of three

Sometimes you need to implement a class that manages a resource. (Never manage multiple resources in a single class, this will only lead to pain.) In that case, remember the rule of three:

If you need to explicitly declare either the destructor, copy constructor or copy assignment operator yourself, you probably need to explicitly declare all three of them.

(Unfortunately, this "rule" is not enforced by the C++ standard or any compiler I am aware of.)

Advice

Most of the time, you do not need to manage a resource yourself, because an existing class such as std::string already does it for you. Just compare the simple code using a std::string member to the convoluted and error-prone alternative using a char* and you should be convinced. As long as you stay away from raw pointer members, the rule of three is unlikely to concern your own code.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 今天学到无比牛逼的加粉大法,也下功夫把粉丝整理了一次,5000人的好友,删除没有交集的,删除朋友圈对我屏蔽的,删除...
    妮可儿5288阅读 147评论 0 0
  • 文/易熙 如果生活是一台戏,那么从群众演员到主演,从摄像师到副导演,很多人都曾说过,"易熙,我觉得你可能拿错剧本了...
    倚南窗以寄阅读 785评论 0 2
  • 我们的大脑无时不刻都在产生念头,只要我们醒着。不信,你可以试一下,脑袋里完全什么都不想,其实是非常地难的。我们如果...
    周纪名阅读 731评论 0 0
  • 图片处理 1, GPUImagePicture 从名称就可以知道GPUImagePicture是GPUImage框...
    874b526fa570阅读 574评论 0 1