层次聚类

层次聚类(hierarchical clustering)算法极为简单:有N多节点,最开始认为每个节点为一类,然后找到距离最近的节点“两两合并”,合并后的两个节点的平均值作为新的节点,继续两两合并的过程,直到最后都合并成一类。

下图表明了聚类的过程,距离最近的节点合并(第一步中,如果有两对节点距离一样,那就同时合并)


层次聚类过程

如果用数据挖掘工具来做(如SPSS),一般会生成一个树形图,那么我们可以根据分析问题的具体情况,选择到底最终要聚成几类:

层次聚类树形图

如果从纯理论上讲,判断聚成几类可以参考每一步合并的“距离”是不是有明显差距,我们的例子中:

第一步:A和B,C和D合并时候,距离很近,就算大概是1(就是肉眼估算,没有什么测量)
第二步:CD和E合并,距离其实也很近,大概2
第三步:CDE和F合并,距离远了,大概8
第四步:CDEF和AB合并,距离大概9

可见,第二步到第三步,距离有了一个质的提升,说明相对接近的都已经合成一推儿,开始远距离“结合”了,因此,就在第二步的地方结束,应该是一个较好的聚类选择,也就是聚成3类。

当然,真正聚成几类一定不要从理论出发,还是要看实际案例中,聚成几类最合理,最好解释,最能说明问题

层次聚类运算速度比较慢,因为要每次都要计算多个cluster内所有数据点的两两距离,处理大量数据时非常吃力,最大的优点,就是它一次性地得到了整个聚类的过程,只要得到了上面那样的聚类树,想要分多少个cluster都可以直接根据树结构来得到结果,改变 cluster数目不需要再次计算数据点的归属。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容

  • 所谓聚类,就是将相似的事物聚集在一起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段。比...
    Ten_Minutes阅读 2,853评论 0 7
  • 层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别数据点间的相似度来创建...
    upshi阅读 27,097评论 3 9
  • 姓名:梁祥学号:17021210935 【嵌牛导读】:层次聚类方法作为一种能够在一定程度上将聚类过程显化的聚类方法...
    Leon_66阅读 3,469评论 1 2
  • Birch层次聚类算法 标签(空格分隔): CF树建立 主要借鉴的网文地址,并进行大量引用:【非常浅显易懂】htt...
    AresAnt阅读 1,419评论 0 1
  • 中国有几位国民少妇,她们的那种媚态,那个骚劲,象极…… 哦,不是说这个, 我是说,她们骂老公时出言的恶毒,打老公时...
    江湖觅道阅读 296评论 0 0