什么是NP完全问题

P, NP, NP-C,NP-Hard

在学习决策树的时候,我们知道,其一大特点是:寻找最佳的决策树是NP完成问题。什么是NP完全问题,决策树的这一特点又是什么意思?

什么是NP完全问题

这里的NP其实是Non-deterministic Polynomial的缩写,即多项式复杂程度的非确定性问题,NP完全问题有时也会简称为NP-C问题。与此概念相关的还有P类问题、NP类问题等。要理解什么是NP完全问题,首先得从P类问题开始理解。

所有可以在多项式时间内求解的判定问题构成P类问题

判定问题是指回答结果输出为YesNo的问题,比如:3233是否可以写成两个大于1的数字的乘积?是否存在一条路线有且仅有一次的走过七桥问题的每一座桥?

在设计程序时,我们经常需要评估这个程序的时间复杂度,即衡量当问题规模变大后,程序执行所需的时间增长会有多快。如O(1)表示常数级别,即不管问题的规模变大多少倍,所耗的时间不会改变;O(N^2) 表示平方级别,即当问题规模增大至2倍时,所花费的时间则放大至4倍;O(2^N) 表示指数级别,即当问题规模倍数扩大时,所用时间会呈指数放大。

多项式时间则是指O(1)、O(logN)、O(N^2) 等这类可用多项式表示的时间复杂度,通常我们认为计算机可解决的问题只限于多项式时间内。而O(2^N)、O(N!)这类非多项式级别的问题,其复杂度往往已经到了计算机都接受不了的程度。

所有非确定性多项式时间内可解的判定问题构成NP类问题

NP类问题将问题分为求解和验证两个阶段,问题的求解是非确定性的,无法在多项式时间内得到答案,而问题的验证却是确定的,能够在多项式时间里确定结果。

比如:是否存在一个公式可以计算下一个质数是多少?这个问题的答案目前是无法直接计算出来的,但是如果某人给出了一个公式,我们却可以在多项式时间里对这个公式进行验证。

NP中的一类比较特殊的问题,这类问题中每个问题的复杂度与整个类的复杂度有关联性,假如其中任意一个问题在多项式时间内可解的,则这一类问题都是多项式时间可解。这些问题被称为NP完全问题

可以说NP完全问题是NP类问题的一种特殊情况,总结这几类问题的特点,可参考如下这个表格:

问题类型 是否能在多项式时间内求解 是否能在多项式时间内验证
P
NP 是 or 否
NP-C 未知

注:表格中的问题类型的困难程度依次递增

由表可知,NP类问题是否能在多项式时间内求解,其答案并不明确,如果回答为「是」,岂不是跟P类问题一样了?值得一题的是,P=NP?是千禧七大难题的首个难题,是一个价值百万美元的问题,这个问题本质是求证:能用多项式时间验证解的问题是否内在多项式时间内找出解。

决策树的NP完全问题

在决策树算法中,寻找最优决策树是一个NP完全问题。决策树的这一特点,说明我们无法利用计算机在多项式时间内,找出全局最优的解。

也正因为如此,大多数决策树算法都采用启发式的算法,如贪心算法,来指导对假设空间的搜索。可以说,决策树最后的结果,是在每一步、每一个节点上做的局部最优选择。决策树得到的结果,是没法保证为全局最优的。

(全文完)

参考文章:
1、什么是P问题、NP问题和NPC问题
2、what are the differences between np, np-complete and np-hard

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容