单变量线性回归和多变量线性回归

1.单变量线性回归


一个例子:当需要预测房价,我们要使用一个数据集,数据集包含俄勒冈州波特兰市的住房价格。在这个数据集中我们假设price只和size这一个特征相关时,这是个监督学习,因为我们的每条数据对于size都有一个“正确答案”。那么让我们预测一个给定size的房子的房价是多少的问题就是一个回归问题。

我们将要用来描述这个回归问题的标记如下:

𝑚 代表训练集中实例的数量

𝑥 代表特征/输入变量

𝑦 代表目标变量/输出变量

(𝑥,𝑦) 代表训练集中的实例

(𝑥(𝑖),𝑦(𝑖)) 代表第𝑖 个观察实例

h 代表学习算法的解决方案或函数也称为假设(hypothesis)

其中h的一种表达的可能为h_{\theta }(x) =\theta _{0} +\theta _{1} x,注意,这里只有一个特征/输入变量,所以称为单变量线性回归问题。

当有m个样本时,

线性回归函数写成:h_{\theta } (x^i )=\theta _{0} +\theta _{1} x^i,其中i=1,2,3,...,m 表示数据集样本的个数。

参数:\theta _{0}, \theta _{1}

代价函数(目标函数)J(\theta _{0}, \theta _{1} )=\frac{1}{2m} \sum\nolimits_{i=1}^m(h_{\theta }(x^i) -y^i ) ^2,i=1,2,3,...,m

代价函数选择了误差平方和,误差平方和是大多数问题特别是回归问题的一个合理选择。

目标:minimize_{\theta _{0} ,\theta _{1} } J(\theta _{0} ,\theta _{1} )

下图为\theta _{0} ,\theta _{1} ,J(\theta _{0} ,\theta _{1})的三维等高图:

可以看出存在一个全局最小值


h_{\theta } (x)平面图,J(\theta _{0} ,\theta _{1})的等高图,如下:


2.梯度下降


梯度下降是用来求函数最小值的常用算法,

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容