《深入浅出数据分析》读书分享

这本书通过13个故事来讲述十三个数据分析的知识点,每个故事情节大同小异,一般是一家公司经营出现了问题,公司老板通过邮件告知数据分析师目前的问题是什么,有什么背景和条件,然后数据分析师进行数据分析输出建议。本书基本没有专业术语和概念,全书四五百页都用对话加插图的形式讲述,每章有问答和作业。如果不做书本中的那些作业,大概5到6个小时可以阅读完。

这本书主要有以下内容:

1.分解数据

数据分析的流程:确定问题,分解问题和数据(找出高效的比较因子),评估(核心是作出有效的比较),决策(作出自己明确的假设和结论);

统计模型决定于心智模型;

分析报告的组成:背景、数据解说、建议;

2.实验

比较法:最基本的原理;

观察研究法:精心选择分组,避免受到混杂因素的影响;

控制组:一组体现现状的处理对象,未经过任何新的处理;

历史控制法/同期控制法;

随机访谈:从对象池中随机选择对象是避免混杂因素的好办法;

3.最优化

将数据分组:无法控制因素\可控制因素;

转成目标函数、找出可行域、得出最大值;

Excel插件的使用:solver;

4.数据图形化

标签云:http://www.wondle.net;

散点图:寻找因果关系;

优秀的图形有利于思考;

5.回归预测

散点图在于寻找变量中的因果关系;

相关性:两种变量的线性关系;

系数r:衡量相关性的强弱;

相关性取决于实际经验判断;

6.假设检验

证伪:剔除无法证实的假设;

满意法:选出一个最可信的假设;(太主观)

证据诊断性能够帮忙评估假设相对强度;

7.贝叶斯统计

条件概率:以一件事的发生为前提另一件事发生的概率;

基础概率:已经知道的概率;

贝叶斯规则,在计算概率时需要将基础概率考虑在内;

8.主观概率

主观概率数据化有利于直观比较概率的大小;

标准偏差,度量分析点和平均值的偏差;

贝叶斯规则可以修正主观概率偏差;

9.启发法

凭借人类的天性做分析(其实就是人的直觉~);

快省树,固定模式访谈;

10.直方图

显示数据点在数值范围内的分布情况;

正态分布\高斯分布,只要峰的数量超过一个就不是正太分布;

11.误差

外插法:用回归方程预测数据范围外的值;

内插法:对数据范围内的值进行预测;

机会误差:实际结果与预测结果之间的偏差;

均方根误差来描述回归线的分布;

12.关系数据库

表格之间都有量化关系;

关系数据库管理系统(RDBMS);


以上是这本书主要的内容,看完这本书之后有一个很深的感受,太浪费纸张了!(心疼买书的钱~~)将近五百页厚厚的一本书,里面讲述的内容少得可怜,而且有些内容真的很浅,只有浅出没有深入。讲一个求最大值居然用了五六十页,实际内容就讲了高中数学中很基础的一个知识点线性规划求最值(高考试卷中最多放在大题的第二题~)。一个直方图也讲了几十页,中间穿插了很多用处不大的对话和情节。还有,没读这本书之前看到评论说这本书构思跌宕起伏,行文妙趣横生,但是我在阅读的过程中真没有感受到~~

不过这本书对于完全没有统计学基础的同学还是有一定作用的,里面讲了一些数据统计分析的基本套路和思维方法,有利于统计分析意识的建立。

综上,体验不达预期,不推荐。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容