二十. java数据结构 - 平衡二叉树(AVL树)

1.二叉排序树可能的问题

给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在

左边 BST 存在的问题分析:

  1. 左子树全部为空,从形式上看,更像一个单链表.

  2. 插入速度没有影响

  3. 查询速度明显降低(因为需要依次比较), 不能发挥 BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢

  4. 解决方案-平衡二叉树(AVL)

2.平衡二叉树基本介绍

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树, 可以保证查询效率较高。

  2. 具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树

平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等

  1. 举例说明, 看看下面哪些 AVL 树, 为什么?
平衡二叉树

3. 平衡二叉树单旋转(左旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {4,3,6,5,7,8}
平衡二叉树单旋转(左旋转)
private void leftRotate() {
        
        //创建新的结点,以当前根结点的值
        Node newNode = new Node(value);
        //把新的结点的左子树设置成当前结点的左子树
        newNode.left = left;
        //把新的结点的右子树设置成带你过去结点的右子树的左子树
        newNode.right = right.left;
        //把当前结点的值替换成右子结点的值
        value = right.value;
        //把当前结点的右子树设置成当前结点右子树的右子树
        right = right.right;
        //把当前结点的左子树(左子结点)设置成新的结点
        left = newNode;
        
        
    }

4.平衡二叉树单旋转(右旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}
平衡二叉树单旋转(右旋转)
private void rightRotate() {
        Node newNode = new Node(value);
        newNode.right = right;
        newNode.left = left.right;
        value = left.value;
        left = left.left;
        right = newNode;
    }

5.平衡二叉树双旋转

前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成平衡二叉树的转换。比如数列

int[] arr = { 10, 11, 7, 6, 8, 9 }; 运行原来的代码可以看到,并没有转成 AVL 树.

int[] arr = {2,1,6,5,7,3}; // 运行原来的代码可以看到,并没有转成 AVL 树

平衡二叉树双旋转
  1. 当符号右旋转的条件时

  2. 如果它的左子树的右子树高度大于它的左子树的高度

  3. 先对当前这个结点的左节点进行左旋转

  4. 在对当前结点进行右旋转的操作即可

1.创建Node结点

class Node {
    int value;
    Node left;
    Node right;

    public Node(int value) {

        this.value = value;
    }

    // 返回左子树的高度
    public int leftHeight() {
        if (left == null) {
            return 0;
        }
        return left.height();
    }

    // 返回右子树的高度
    public int rightHeight() {
        if (right == null) {
            return 0;
        }
        return right.height();
    }

    // 返回 以该结点为根结点的树的高度
    public int height() {
        return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
    }
    
    //左旋转方法
    private void leftRotate() {
        
        //创建新的结点,以当前根结点的值
        Node newNode = new Node(value);
        //把新的结点的左子树设置成当前结点的左子树
        newNode.left = left;
        //把新的结点的右子树设置成带你过去结点的右子树的左子树
        newNode.right = right.left;
        //把当前结点的值替换成右子结点的值
        value = right.value;
        //把当前结点的右子树设置成当前结点右子树的右子树
        right = right.right;
        //把当前结点的左子树(左子结点)设置成新的结点
        left = newNode;
        
        
    }
    
    //右旋转
    private void rightRotate() {
        Node newNode = new Node(value);
        newNode.right = right;
        newNode.left = left.right;
        value = left.value;
        left = left.left;
        right = newNode;
    }

    // 查找要删除的结点
    /**
     * 
     * @param value
     *            希望删除的结点的值
     * @return 如果找到返回该结点,否则返回null
     */
    public Node search(int value) {
        if (value == this.value) { // 找到就是该结点
            return this;
        } else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
            // 如果左子结点为空
            if (this.left == null) {
                return null;
            }
            return this.left.search(value);
        } else { // 如果查找的值不小于当前结点,向右子树递归查找
            if (this.right == null) {
                return null;
            }
            return this.right.search(value);
        }

    }

    // 查找要删除结点的父结点
    /**
     * 
     * @param value
     *            要找到的结点的值
     * @return 返回的是要删除的结点的父结点,如果没有就返回null
     */
    public Node searchParent(int value) {
        // 如果当前结点就是要删除的结点的父结点,就返回
        if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
            return this;
        } else {
            // 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
            if (value < this.value && this.left != null) {
                return this.left.searchParent(value); // 向左子树递归查找
            } else if (value >= this.value && this.right != null) {
                return this.right.searchParent(value); // 向右子树递归查找
            } else {
                return null; // 没有找到父结点
            }
        }

    }

    @Override
    public String toString() {
        return "Node [value=" + value + "]";
    }

    // 添加结点的方法
    // 递归的形式添加结点,注意需要满足二叉排序树的要求
    public void add(Node node) {
        if (node == null) {
            return;
        }

        // 判断传入的结点的值,和当前子树的根结点的值关系
        if (node.value < this.value) {
            // 如果当前结点左子结点为null
            if (this.left == null) {
                this.left = node;
            } else {
                // 递归的向左子树添加
                this.left.add(node);
            }
        } else { // 添加的结点的值大于 当前结点的值
            if (this.right == null) {
                this.right = node;
            } else {
                // 递归的向右子树添加
                this.right.add(node);
            }

        }
        
        //当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
        if(rightHeight() - leftHeight() > 1) {
            //如果它的右子树的左子树的高度大于它的右子树的右子树的高度
            if(right != null && right.leftHeight() > right.rightHeight()) {
                //先对右子结点进行右旋转
                right.rightRotate();
                //然后在对当前结点进行左旋转
                leftRotate(); //左旋转..
            } else {
                //直接进行左旋转即可
                leftRotate();
            }
            return ; //必须要!!!
        }
        
        //当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
        if(leftHeight() - rightHeight() > 1) {
            //如果它的左子树的右子树高度大于它的左子树的高度
            if(left != null && left.rightHeight() > left.leftHeight()) {
                //先对当前结点的左结点(左子树)->左旋转
                left.leftRotate();
                //再对当前结点进行右旋转
                rightRotate();
            } else {
                //直接进行右旋转即可
                rightRotate();
            }
        }
    }

    // 中序遍历
    public void infixOrder() {
        if (this.left != null) {
            this.left.infixOrder();
        }
        System.out.println(this);
        if (this.right != null) {
            this.right.infixOrder();
        }
    }

}

2.创建AVLTree

class AVLTree {
    private Node root;

    public Node getRoot() {
        return root;
    }

    // 查找要删除的结点
    public Node search(int value) {
        if (root == null) {
            return null;
        } else {
            return root.search(value);
        }
    }

    // 查找父结点
    public Node searchParent(int value) {
        if (root == null) {
            return null;
        } else {
            return root.searchParent(value);
        }
    }

    // 编写方法:
    // 1. 返回的 以node 为根结点的二叉排序树的最小结点的值
    // 2. 删除node 为根结点的二叉排序树的最小结点
    /**
     * 
     * @param node
     *            传入的结点(当做二叉排序树的根结点)
     * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
     */
    public int delRightTreeMin(Node node) {
        Node target = node;
        // 循环的查找左子节点,就会找到最小值
        while (target.left != null) {
            target = target.left;
        }
        // 这时 target就指向了最小结点
        // 删除最小结点
        delNode(target.value);
        return target.value;
    }

    // 删除结点
    public void delNode(int value) {
        if (root == null) {
            return;
        } else {
            // 1.需求先去找到要删除的结点 targetNode
            Node targetNode = search(value);
            // 如果没有找到要删除的结点
            if (targetNode == null) {
                return;
            }
            // 如果我们发现当前这颗二叉排序树只有一个结点
            if (root.left == null && root.right == null) {
                root = null;
                return;
            }

            // 去找到targetNode的父结点
            Node parent = searchParent(value);
            // 如果要删除的结点是叶子结点
            if (targetNode.left == null && targetNode.right == null) {
                // 判断targetNode 是父结点的左子结点,还是右子结点
                if (parent.left != null && parent.left.value == value) { // 是左子结点
                    parent.left = null;
                } else if (parent.right != null && parent.right.value == value) {// 是由子结点
                    parent.right = null;
                }
            } else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;

            } else { // 删除只有一颗子树的结点
                // 如果要删除的结点有左子结点
                if (targetNode.left != null) {
                    if (parent != null) {
                        // 如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.left;
                        } else { // targetNode 是 parent 的右子结点
                            parent.right = targetNode.left;
                        }
                    } else {
                        root = targetNode.left;
                    }
                } else { // 如果要删除的结点有右子结点
                    if (parent != null) {
                        // 如果 targetNode 是 parent 的左子结点
                        if (parent.left.value == value) {
                            parent.left = targetNode.right;
                        } else { // 如果 targetNode 是 parent 的右子结点
                            parent.right = targetNode.right;
                        }
                    } else {
                        root = targetNode.right;
                    }
                }

            }

        }
    }

    // 添加结点的方法
    public void add(Node node) {
        if (root == null) {
            root = node;// 如果root为空则直接让root指向node
        } else {
            root.add(node);
        }
    }

    // 中序遍历
    public void infixOrder() {
        if (root != null) {
            root.infixOrder();
        } else {
            System.out.println("二叉排序树为空,不能遍历");
        }
    }
}

3.测试

    public static void main(String[] args) {
        //int[] arr = {4,3,6,5,7,8};
        //int[] arr = { 10, 12, 8, 9, 7, 6 };
        int[] arr = { 10, 11, 7, 6, 8, 9 };  
        //创建一个 AVLTree对象
        AVLTree avlTree = new AVLTree();
        //添加结点
        for(int i=0; i < arr.length; i++) {
            avlTree.add(new Node(arr[i]));
        }
        
        //遍历
        System.out.println("中序遍历");
        avlTree.infixOrder();
        
        System.out.println("在平衡处理~~");
        System.out.println("树的高度=" + avlTree.getRoot().height()); //3
        System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
        System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
        System.out.println("当前的根结点=" + avlTree.getRoot());//8
        
        
    }
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容