论文
A global reptile assessment highlights shared conservation needs of tetrapods
https://www.nature.com/articles/s41586-022-04664-7#Sec33
数据代码链接
https://github.com/j-marin/Global-reptile-assessment-
今天的推文学习一下推文中的Figure 3的簇状柱形图,没有找到论文中的作图代码,但是找到了原始数据集,有了原始数据集就可以自己写代码来做这个图
部分示例数据集
加载需要用到的R包
library(readxl)
library(ggplot2)
library(tidyverse)
library(patchwork)
Figure 3a
dat01<-read_excel("data/20220630/41586_2022_4664_MOESM4_ESM.xlsx",
sheet = "Fig 3a")
head(dat01)
dim(dat01)
dat01$Threat<-factor(dat01$Threat,
levels = dat01$Threat %>% unique())
ggplot(data=dat01,aes(x=Threat,y=n,fill=className))+
geom_bar(stat="identity",position = "dodge")+
theme_classic()+
geom_vline(xintercept = 5.5,lty="dashed")+
geom_vline(xintercept = 9.5,lty="dashed")+
annotate(geom = "text",x=2.5,y=0.9,label="Habitat destruction")+
annotate(geom = "text",x=7.5,y=0.9,label="Habitat change")+
annotate(geom = "text",x=11,y=0.9,label="Other")+
theme(legend.position = "bottom",
axis.text.x = element_text(angle=60,hjust = 1,vjust = 1),
legend.title = element_blank())+
labs(x=NULL,y="Species threatened (%)")+
scale_fill_manual(values = c("#936eaa","#401f51",
"#5f6798","#de6eaa"))+
scale_y_continuous(labels = function(x){x*100}) -> p1
p1
Figure 3b
和Figure 3a是一样的,唯一的区别是配色不一样
dat02<-read_excel("data/20220630/41586_2022_4664_MOESM4_ESM.xlsx",
sheet = "Fig 3b")
head(dat02)
dim(dat02)
dat02$Threat<-factor(dat02$Threat,
levels = dat02$Threat %>% unique())
ggplot(data=dat02,aes(x=Threat,y=n,fill=className))+
geom_bar(stat="identity",position = "dodge")+
theme_classic()+
geom_vline(xintercept = 5.5,lty="dashed")+
geom_vline(xintercept = 9.5,lty="dashed")+
annotate(geom = "text",x=2.5,y=0.9,label="Habitat destruction")+
annotate(geom = "text",x=7.5,y=0.9,label="Habitat change")+
annotate(geom = "text",x=11,y=0.9,label="Other")+
theme(legend.position = "bottom",
axis.text.x = element_text(angle=60,hjust = 1,vjust = 1),
legend.title = element_blank())+
labs(x=NULL,y="Species threatened (%)")+
scale_fill_manual(values = c("#4868af","#e41f24",
"#edb91d","#973692"))+
scale_y_continuous(labels = function(x){x*100}) -> p2
p2
最后是拼图
p1/p2 + plot_annotation(tag_levels = "a")
论文中的figure4也是簇状柱形图,感兴趣的可以自己试着复现一下
示例数据和代码可以自己到论文中获取,或者给本篇推文点赞,点击在看,然后留言获取
欢迎大家关注我的公众号
小明的数据分析笔记本
小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!