看,水滴在玩蹦床!

说到超疏水表面,很多人可能已经感觉不陌生了。在荷叶表面,圆圆的水滴滚落,不会润湿表面,而如果是水滴从高处滴落到超疏水表面上,它们甚至还能弹跳起来。

从高处下落的水滴在超疏水表面上弹跳。原视频来自:UniversityRochester
但是,如果是原本静止的水滴,有没有办法能让它自己“蹦起来”呢?最近,瑞士苏黎世理工大学布里卡克斯(Poulikakos)教授的课题组就让疏水表面上的水滴自发地弹跳了起来,这一发现于11月4日发表在了《自然》(Nature)期刊上[1]
点击此处可阅读论文全文)。
从疏水表面上自己跳起来的水滴。原视频来自:T M Schutzius et al.
水滴究竟是怎么自己蹦起来的?答案其实就是降低周围环境的气压。研究者们先让小水滴静止在超疏水表面上,然后降低周围的气压。当气压降低到一定程度之后,水滴自己就会蹦跳起来,并且还像蹦床运动员一样能够越跳越高。
水滴为什么会蹦高?
要解释这背后的原因,还要从超疏水表面的微观结构开始说起。在自然界,最有名的疏水表面是荷叶,它的表面有细小的微观粗糙结构,还包裹着不亲水的表皮蜡,这些结构托起水滴,减小了固体和液体的接触面积,使水滴处于“半悬空”的状态。
荷叶表面粗糙的微观结构。
在这里,研究者们所使用的超疏水表面也有类似的结构,当水滴“坐”在上面时,其实是刷子状的细微突起和空隙中的空气共同托起了它。
超疏水表面的柯西模型[2]示意图。
在密闭环境下,当环境气压降低并保证较低的环境湿度时,水分子的扩散就会加剧,从而加速液体蒸发。当然,蒸发的方向是四面八方的,水滴的下方也不例外。而当水滴“坐”在超疏水表面上时,水滴在下部的蒸发就会受到阻碍。超疏水表面的空隙是开放的,但即使如此,空气在其中依然不能那么顺畅的流动。这样一来,随着水滴的蒸发,在水滴下方水蒸气就会聚集起来,产生一个过压强(overpressure)。这个额外的压强会给水滴一个向上的力,当压力超过了重力加上水与基底的黏附力时,水滴会被顶得跳起来啦。当然,在设计超疏水基底的时候要保证结构足够矮,足够拥挤,才能使气体流通不顺畅。
水滴被弹起之后获得了动能,当上升到一定高度之后自然会下落碰撞超疏水表面。超疏水表面对水的黏附力极低,因此水滴在碰撞超疏水表面时不会因黏附而损失很多能量,并且会在表面弹跳[4]

积攒在凸起之间的水蒸气让水滴跳了起来。图片来自:参考资料3
此外,碰撞时基底结构中的水蒸气又会助水滴“一臂之力”,从而水滴在每一次碰撞时都会获得一个加速度,进而越蹦越高,就像一个蹦床运动员一样。
和蹦床上的人一样,水滴也可以越跳越高。原视频来自T M Schutzius et al
水滴的跳动还可以带动悬臂进行持续的振动:
原视频来自T M Schutzius et al.
这个现象看起来不同寻常,不过它和日常生活中也能看到的另一个现象——莱顿弗罗斯特效应——也有相似之处。记得小时候,东北老家还在烧炕的年代,经常会看到水滴到炉子上,发出呲呲的声音。水滴在到处翻滚而不会润湿炉子,最终蒸发殆尽,这也是高温下水蒸气把水滴托起的结果。
莱顿弗罗斯特效应,在温度远超沸点的灼热表面上,蒸汽托起水滴并推动它移动。图片来自:itsokaytobesmart.com
“自动除冰”
除了蹦跳的水滴之外,研究者还向人们展示了更加酷炫的“冰滴飞起”现象。在同样的低压条件下,将过冷水置于超疏水表面上,随着时间推移,过冷水结冰,而“结冰+低压”同样可以导致一个加速蒸发的过程,从而推动冰滴,使它从表面上腾空而起。
原视频来自T M Schutzius et al.
对于需要预防结冰的表面,这种现象看起来是个好消息。不过,德国马普所的福尔默(Vollmer)教授指出,尽管这一系列工作很酷炫,但如何应用它还是个难题。尤其在户外的开放环境下,依靠降低气压来防止结冰很难操作[3]

总之,这还是一项非常有趣的发现,它也让我们对超疏水表面上水滴的性质有了新的认识。(编辑:窗敲雨)

作者是英国伦敦大学学院化学系博士生陆遥,他所在的实验室也在进行超疏水材料方面的研究。

参考资料:

Thomas M. Schutzius, Stefan Jung, Tanmoy Maitra, Gustav Graeber, Moritz Köhme & Dimos Poulikakos, Nature 527, 82–85 (2015).
A. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944).
Doris Vollmer & Hans-Jürgen Butt, Nature 527, 41–42 (2015).
Liu, Y. et al. Nature Phys. 10, 515–519 (2014).

from: 果壳

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容

  • 文/陈小乐 同学悠悠刚毕业进入社会一年不到就就结婚生宝宝了,我期初听到还是不太敢相信这事实。要知道悠悠在学校...
    陈小乐阅读 310评论 0 0
  • 武夷岩茶品茗法:眼—观、鼻—闻、舌—尝、身—受、意—感。通过人的视觉、嗅觉、味觉和触觉、意感对茶叶的条索、色泽、香...
    茶雲澗阅读 379评论 0 0
  • 目标:种出理想的伴侣 感恩冥想: 1、感恩今天因为我身体不舒服同事们帮我分担工作。 2、感恩今天的我虽然身体不舒服...
    小兔兔姐姐爱吃胡萝卜阅读 113评论 0 0
  • 作者:花马鱼 原谅我还要再次默读下面一段文字。 “有时候我们走的太过匆忙,其实忘了自己还会写字儿。有时候我们生活苦...
    晖说阅读 168评论 0 0