数据基本情况之描述性统计分析python

  1. 集中趋势:均值、中位数、众数
  2. 离散程度:方差(标准差),IQR=Q3-Q1 (中间 50%数据的范围)
  3. 分布形态描述:核密度分布图、改进箱图

以下例子data为某一服务的响应时长数据,浮点型。

import numpy as np

# 1. 集中趋势:均值、中位数、众数
m=np.mean(data)
print('均值:',m)
md=np.median(data)
print('中位数:',md)


# 2.离散程度:方差、标准差,IQR=Q3-Q1(中间 50%数据的范围) 
v=np.var(data)
print('方差:',v)
s=np.std(data)
print('标准差:',s)

Percentile = np.percentile(data,[0,25,50,75,100])
IQR = Percentile[3] - Percentile[1]
print('Q1:',Percentile[1])
print('Q2:',Percentile[2])
print('D1:',Percentile[3])
print('IQR:',IQR)

U1 = Percentile[3] + IQR*1.5
U2 = Percentile[3] + IQR*3.0
D1 = Percentile[1] - IQR*1.5
D2 = Percentile[1] - IQR*3.0
print('上界可能异常值:',U1)
print('上界异常值:',U2)
print('下界可能异常值:',D1)
print('下界异常值:',D2)

# 3. 分布形态:改进箱图、核密度分布图
df_select=df.loc[(df['distance']>0)&(df['distance']<U2)]
print(df_select)
data2=df_select['distance']

fig1 = plt.figure()
sns.boxplot(y=data2)

fig2 = plt.figure()
ax=sns.kdeplot(data2,shade=True,color="g" )
x, y = ax.get_children()[0].get_paths()[0].vertices.T
maxid = y.argmax()
print("众数",x[maxid])

时长本不应该是负数,所以去掉负数。众数 0.148。5s未响应基本上属于服务异常


箱形图

去掉异常值后的密度分布情况


核密度分布情况

参考链接:https://wenku.baidu.com/view/f084924d11a6f524ccbff121dd36a32d7375c795.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容