- x = bintprog(f)
- x = bintprog(f, A, b)
- x = bintprog(f, A, b, Aeq, beq)
这里x是问题的解向量
f是由目标函数的系数构成的向量
A是一个矩阵,b是一个向量
A,b和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件
A,b是系数矩阵和右端向量。
Aeq和Beq表示了线性规划中等式约束条件中的系数矩阵和右端向量。
在使用linprog()命令时,系统默认它的参数至少为1个,
但如果我们需要给定第6个参数,则第2、3、4、5个参数也必须给出,否则系统无法认定给出的是第6个参数。遇到无法给出时,则用空矩阵“[]”替代。
例如
max=193x1+191x2+187x3+186x4+180x5+185x6;
%f由这里给出
st.
x5+x6>=1;
x3+x5>=1;
x1+x2<=1;
x2+x6<=1;
x4+x6<=1;
%a、b由不等关系给出,如没有不等关系,a、b取[]
x1+x2+x3+x4+x5+x6=1; aep、bep由等式约束给出
代码如下
f=[-193;-191;-187;-186;-180;-185;];
a=[0 0 0 0 -1 -1;0 -1 0 0 -1 0;1 1 0 0 0 0;0 1 0 0 0 1;0 0 0 1 0 1];
b=[-1,-1,1,1,1]';
aeq=[1 1 1 1 1 1];
beq=[3];
x=bintprog(f,a,b,aeq,beq)
注意
目标值为最大值时应乘以-1化为求最小值;
不等约束为>=时应乘以-1化为<=;
程序运行最后得出的结果为 x1,……x6 的 0,1 取值
以及max