算法导论----学习笔记


渐进符号

1、Θ记号 Θ(g(n)) = { f(n) : 若存在正常数c1,c2和n0,使对所有n>=n0时有0<=c1g(n)<=f(n)<=c2g(n)}

其效果相当于删除f(n)中的低阶项,并忽略最高阶项的系数。

2、Ο记号 Ο(g(n)) = { f(n) : 存在正常数c和n0,使对所有n>=n0,有0<=f(n)<=c*g(n) }

Ο记号在一个常数因子内给出某函数的一个上界。f(n) = Ο(g(n))表示f(n)是集合O(g(n))的一个元素。f(n) = Θ(g(n))隐含着f(n) = Ο(g(n)),因为Θ记号强于Ο记号。对f(n) = Ο(g(n))只能说明g(n)的某个常数倍是f(n)的渐近上界,而不反映该上界如何接近。Ο记号在用作对算法最坏情况运行时间的上界时就有对任意输入的运行时间的上界。

3、Ω记号 Ω(g(n)) = { f(n) : 存在正常数c和n0,使所有n>=n0有0<=c*g(n)<=f(n) }

Ω记号给出一个函数的渐近下界。

对于上面三种,有下面的定理:

对任意两个函数f(n)和g(n),f(n) = Θ(g(n))当且仅当f(n) = Ο(g(n))和f(n) = Ω(g(n)).

4、其它符号

ο记号:Ο记号提供的渐近上界可能是也可能不是渐近紧确的。2n^2 = Ο(n^2)是渐近紧确的,而2n = O(n^2)不是。而o记号用来表示非渐近紧确的。 o(g(n)) = { f(n) : 对任意正常数c,存在正常数n0,使对所有n>=n0,有0<=f(n)<=c*g(n) }

ω记号:ω记号与Ω记号的关系和o记号与Ο记号的关系一样,不在多说。

总之,可以这样理解,Θ记号相当于"=",Ο相当于“<=",Ω相当于”>=",o相当于“<",ω相当于">".这样理解只用于区别不同渐近记号间的关系,其实每个渐近记号为一个函数集合,而非两个数关系那样的。

________________________________________-
对于任何数学函数,这三个记号可以用来度量其“渐近表现”,即当趋于无穷大时的阶的情况,这是算法分析中非常重要的概念。大家可以把它们分别想象成≤、≥和 =,分别估计了函数的渐近上界、渐近下界和准确界。诚然,渐近关系和确切大小关系是有区别的,但当问题规模很大时,忽略这种区别能大大降低算法分析的难度。


设函数f ( n )代表某一算法在输入大小为n的情况下的工作量(效率),则在n趋向很大的时候,我们将f (n)与另一行为已知的函数g(n)进行比较:

1)如果=0,则称f (n)在数量级上严格小于g(n),记为f (n)=o( g(n))。

2)如果无穷,则称f (n)在数量级上严格大于g(n),记为f (n)=ω ( g(n))。

3)如果=c,这里c为非0常数,则称f (n)在数量级上等于g(n),即f (n)和g(n)是同一个数量级的函数,记为:f (n)=Θ( g(n))。

4)如果f (n)在数量级上小于或等于g(n),则记为f (n)=O( g(n))。

5)如果f(n)在数量级上大于或等于g(n),则记为f (n)=Ω( g(n))。

这里我们假定f (n),g (n)是非负单调的,且极限存在。如果这个极限不存在,则无法对f (n)和g (n)进行比较。在进行此种计算时,一个经常用到的技术是洛必达(L'Hopital)法则。该法则由17世纪法国数学家Guillaume de L'Hopital发现(也有人认为是瑞士数学家Johann Bernoulli发现的)。该法则声称,两个函数的比率极限等于两个函数的导数的比率极限,这里当然假定两个函数的导数比率的极限存在,即有:

洛必达法则

有了这个定义,就可以对素性测试的两个算法进行比较了。


符合第1个定义,因此这两个素性测试算法的效率差异是数量级的差异。
在算法分析中,最常选取的g(n)有如下一些:

参考文章

http://blog.csdn.net/shadow132/article/details/50546834


求和的基本公式

等差级数

对无穷几何级数求导再同乘以x可得:


再求导,乘x:

套叠级数
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容