空转第16课同型细胞网络(cell degree)内容补充

作者,Evil Genius

什么是细胞“网络”?细胞在空间位置上不是随机出现的,细胞在空间上的定位受到了周围环境以及自身状态的影响,而这种影响的结果,就是每种细胞类型在空间上形成了具有区域偏好性的细胞“网络”。为了系统的确定特定细胞类型的细胞区域“网络”,计算了每种细胞类别中的空间位置彼此相邻的倾向,这里我们称之为同型细胞“网络”。
同型细胞“网络”是为了确定单一细胞类型在空间上的分布特点,多条件进行比较会发现明显的差异和生物学变化。
为了评估每一类(这里就是细胞类型)中spot的空间聚类程度,针对空间转录组构建空间细胞网络,计算网络中每个点 i 的spot degree--- ki(即直接相邻spot的数量,对于 Visium 对应的最大spot degree为 6),文章展示图如下:



意思就是一个spot含有细胞类型A,那其周围的6个spot如果都含有A,那么该spot 为等级6,5个spot含有A则是等级5,以此类推。

课程用示例数据分析一下的结果:

点的大小等一些元素可以调整,最主要的是体现其分布特点

课程上的代码如下:

library(Seurat)
library(dplyr)
library(dbscan)
library(ggplot2)


cortex_sp = readRDS('/root/singlepipeline/demodata/cell2location/sp.degree.test.rds')

###decon_mtrx = t(cortex_sp@assays$predictions@data)

decon_mtrx = read.csv('/root/singlepipeline/demodata/cell2location/sp_sc.csv',header = T,row.names = 1,check.names = F)

decon_mtrx = t(decon_mtrx)

cell_types_all <- colnames(decon_mtrx)[which(colnames(decon_mtrx) != "max")]

decon_df <- decon_mtrx %>%
  data.frame(check.names = F) %>%
  tibble::rownames_to_column("barcodes")

#decon_df$barcodes = rownames(tmp)

cortex_sp@meta.data <- cortex_sp@meta.data %>%
  tibble::rownames_to_column("barcodes") %>%
  dplyr::left_join(decon_df, by = "barcodes") %>%
  tibble::column_to_rownames("barcodes")

###plot dot
slice <- names(cortex_sp@images)[1]
metadata_ds <- data.frame(cortex_sp@meta.data)
colnames(metadata_ds) <- colnames(cortex_sp@meta.data)
cell_types_interest <- cell_types_all

metadata_ds <- metadata_ds %>% tibble::rownames_to_column("barcodeID") %>%
            dplyr::mutate(rsum = base::rowSums(.[, cell_types_interest,
                drop = FALSE])) %>% dplyr::filter(rsum != 0) %>%
            dplyr::select("barcodeID") %>% dplyr::left_join(metadata_ds %>%
            tibble::rownames_to_column("barcodeID"), by = "barcodeID") %>%
            tibble::column_to_rownames("barcodeID")


spatial_coord <- data.frame(cortex_sp@images[[slice]]@coordinates) %>%
        tibble::rownames_to_column("barcodeID") %>% dplyr::mutate(imagerow_scaled = imagerow *
        cortex_sp@images[[slice]]@scale.factors$lowres, imagecol_scaled = imagecol *
        cortex_sp@images[[slice]]@scale.factors$lowres) %>% dplyr::inner_join(metadata_ds %>%
        tibble::rownames_to_column("barcodeID"), by = "barcodeID")

head(spatial_coord)
等级计算
还有 53% 的精彩内容
©著作权归作者所有,转载或内容合作请联系作者
支付 ¥500.00 继续阅读
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容