先来看一下collections模块中的方法:
__all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
'UserString', 'Counter', 'OrderedDict', 'ChainMap']
名字 | 作用 |
---|---|
namedtuple | 用于创建具有命名字段的元组子类的工厂函数 |
deque | 类似列表的容器,两端都有快速追加和弹出 |
ChainMap | 类似于dict的类,用于创建多个映射的单个视图 |
Counter | 用于计算可哈希对象的dict子类 |
OrderedDict | 记住元素添加顺序的dict子类 |
defaultdict | dict子类调用工厂函数来提供缺失值 |
UserDict | 包装字典对象以便于dict子类化 |
UserList | 包装列表对象以便于列表子类化 |
UserString | 包装字符串对象以便于字符串子类化 |
本章我们只介绍除UserDict/UserList/UserString以外的方法,至于这三个方法,我们用于继承他们,而实现你想要的结构。
namedtuple
namedtuple主要用来产生可以使用名称来访问元素的数据对象,通常用来增强代码的可读性, 在访问一些tuple类型的数据时尤其好用。
"""
比如我们用户拥有一个这样的数据结构,每一个对象是拥有三个元素的tuple。
使用namedtuple方法就可以方便的通过tuple来生成可读性更高也更好用的数据结构。
"""
from collections import namedtuple
websites = [
('Sohu', 'http://www.google.com/', u'张朝阳'),
('Sina', 'http://www.sina.com.cn/', u'王志东'),
('163', 'http://www.163.com/', u'丁磊')
]
Website = namedtuple('Website', ['name', 'url', 'founder'])
for website in websites:
website = Website._make(website)
print website
# Result:
Website(name='Sohu', url='http://www.google.com/', founder=u'\u5f20\u671d\u9633')
Website(name='Sina', url='http://www.sina.com.cn/', founder=u'\u738b\u5fd7\u4e1c')
Website(name='163', url='http://www.163.com/', founder=u'\u4e01\u78ca')
deque
deque其实是 double-ended queue 的缩写,翻译过来就是双端队列,它最大的好处就是实现了从队列 头部快速增加和取出对象: .popleft(), .appendleft() 。
值得注意的是,list对象的这两种用法的时间复杂度是 O(n) ,也就是说随着元素数量的增加耗时呈 线性上升。而使用deque对象则是 O(1) 的复杂度,所以当你的代码有这样的需求的时候, 一定要记得使用deque。
作为一个双端队列,deque还提供了一些其他的好用方法,比如 rotate 等。
"""
下面这个是一个有趣的例子,主要使用了deque的rotate方法来实现了一个无限循环
的加载动画
"""
import sys
import time
from collections import deque
fancy_loading = deque('>--------------------')
while True:
print '\r%s' % ''.join(fancy_loading),
fancy_loading.rotate(1)
sys.stdout.flush()
time.sleep(0.08)
# Result:
# 一个无尽循环的跑马灯
------------->-------
Counter
计数器是一个非常常用的功能需求,collections也贴心的为你提供了这个功能。
"""
下面这个例子就是使用Counter模块统计一段句子里面所有字符出现次数
"""
from collections import Counter
s = '''A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The Counter class is similar to bags or multisets in other languages.'''.lower()
c = Counter(s)
# 获取出现频率最高的5个字符
print c.most_common(5)
# Result:
[(' ', 54), ('e', 32), ('s', 25), ('a', 24), ('t', 24)]
OrderedDict
在Python中,dict这个数据结构由于hash的特性,是无序的,这在有的时候会给我们带来一些麻烦, 幸运的是,collections模块为我们提供了OrderedDict,当你要获得一个有序的字典对象时,用它就对了。
from collections import OrderedDict
items = (
('A', 1),
('B', 2),
('C', 3)
)
regular_dict = dict(items)
ordered_dict = OrderedDict(items)
print 'Regular Dict:'
for k, v in regular_dict.items():
print k, v
print 'Ordered Dict:'
for k, v in ordered_dict.items():
print k, v
# Result:
Regular Dict:
A 1
C 3
B 2
Ordered Dict:
A 1
B 2
C 3
defaultdict
我们都知道,在使用Python原生的数据结构dict的时候,如果用 d[key] 这样的方式访问, 当指定的key不存在时,是会抛出KeyError异常的。
但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。
from collections import defaultdict
members = [
# Age, name
['male', 'John'],
['male', 'Jack'],
['female', 'Lily'],
['male', 'Pony'],
['female', 'Lucy'],
]
result = defaultdict(list)
for sex, name in members:
result[sex].append(name)
print result
# Result:
defaultdict(<type 'list'>, {'male': ['John', 'Jack', 'Pony'], 'female': ['Lily', 'Lucy']})
ChainMap
ChainMap:合并多个字典
dict1={'name':'jim','age':21}
dict2={'high':175,'gender':'男'}
new_dict=ChainMap(dict1,dict2)
print(new_dict) #ChainMap({'name': 'jim', 'age': 21}, {'high': 175, 'gender': '男'})
#前dict中存在的键值对将会使后面dict中的键值对不会被重新合并,也可以使用update()方法对
#原字典更新新字典到里面,不过和直接合并的区别是,update会重新创建新字典,原字典更新删除
#数据不会影响新字典