用CapsNets做电能质量扰动分类(2019-08-05)

        当下最热神经网络为CNN,2017年10月,深度学习之父Hinton发表《胶囊间的动态路由》(Capsule Networks),最近谷歌正式开源了Hinton胶囊理论代码,提出的胶囊神经网络。本文不涉及原理,只是站在巨人的肩膀人,尝试把胶囊网络应用与分类问题。

原理和代码的参考文献是:https://blog.csdn.net/weixin_40920290/article/details/82951826

其中,本文采用的数据集和以2019年3月CNN做电能质量分类的一样,可以去那个博文中下载数据集。这里只展示代码。需要提醒的是,Capsule Networks的运行速度会比较慢,耐心等待.

如果由于格式问题无法运行,可以把邮箱私戳发给我,我把Capsule.py发给你

1.代码

from __future__ import print_function

import numpy as np

from keras import layers, models, optimizers

from keras import backend as K

from keras.utils import to_categorical

import matplotlib.pyplot as plt

from utils import combine_images

from PIL import Image

from capsulelayers import CapsuleLayer, PrimaryCap, Length, Mask

import keras

from pandas import read_csv

K.set_image_data_format('channels_last')

def CapsNet(input_shape, n_class, routings):

    """

    A Capsule Network on MNIST.

    :param input_shape: data shape, 3d, [width, height, channels]

    :param n_class: number of classes

    :param routings: number of routing iterations

    :return: Two Keras Models, the first one used for training, and the second one for evaluation.

            `eval_model` can also be used for training.

    """

    x = layers.Input(shape=input_shape)

    # Layer 1: Just a conventional Conv2D layer

    conv1 = layers.Conv2D(filters=256, kernel_size=9, strides=1, padding='valid', activation='relu', name='conv1')(x)

    # Layer 2: Conv2D layer with `squash` activation, then reshape to [None, num_capsule, dim_capsule]

    primarycaps = PrimaryCap(conv1, dim_capsule=8, n_channels=32, kernel_size=9, strides=2, padding='valid')

    # Layer 3: Capsule layer. Routing algorithm works here.

    digitcaps = CapsuleLayer(num_capsule=n_class, dim_capsule=16, routings=routings,

                            name='digitcaps')(primarycaps)

    # Layer 4: This is an auxiliary layer to replace each capsule with its length. Just to match the true label's shape.

    # If using tensorflow, this will not be necessary. :)

    out_caps = Length(name='capsnet')(digitcaps)

    # Decoder network.

    y = layers.Input(shape=(n_class,))

    masked_by_y = Mask()([digitcaps, y])  # The true label is used to mask the output of capsule layer. For training

    masked = Mask()(digitcaps)  # Mask using the capsule with maximal length. For prediction

    # Shared Decoder model in training and prediction

    decoder = models.Sequential(name='decoder')

    decoder.add(layers.Dense(512, activation='relu', input_dim=16*n_class))

    decoder.add(layers.Dense(1024, activation='relu'))

    decoder.add(layers.Dense(np.prod(input_shape), activation='sigmoid'))

    decoder.add(layers.Reshape(target_shape=input_shape, name='out_recon'))

    # Models for training and evaluation (prediction)

    train_model = models.Model([x, y], [out_caps, decoder(masked_by_y)])

    eval_model = models.Model(x, [out_caps, decoder(masked)])

    # manipulate model

    noise = layers.Input(shape=(n_class, 16))

    noised_digitcaps = layers.Add()([digitcaps, noise])

    masked_noised_y = Mask()([noised_digitcaps, y])

    manipulate_model = models.Model([x, y, noise], decoder(masked_noised_y))

    return train_model, eval_model, manipulate_model

def margin_loss(y_true, y_pred):

    """

    Margin loss for Eq.(4). When y_true[i, :] contains not just one `1`, this loss should work too. Not test it.

    :param y_true: [None, n_classes]

    :param y_pred: [None, num_capsule]

    :return: a scalar loss value.

    """

    L = y_true * K.square(K.maximum(0., 0.9 - y_pred)) + \

        0.5 * (1 - y_true) * K.square(K.maximum(0., y_pred - 0.1))

    return K.mean(K.sum(L, 1))

def train(model, data, args):

    """

    Training a CapsuleNet

    :param model: the CapsuleNet model

    :param data: a tuple containing training and testing data, like `((x_train, y_train), (x_test, y_test))`

    :param args: arguments

    :return: The trained model

    """

    # unpacking the data

    (x_train, y_train), (x_test, y_test) = data

    # callbacks

    log = callbacks.CSVLogger(args.save_dir + '/log.csv')

    tb = callbacks.TensorBoard(log_dir=args.save_dir + '/tensorboard-logs',

                              batch_size=args.batch_size, histogram_freq=int(args.debug))

    checkpoint = callbacks.ModelCheckpoint(args.save_dir + '/weights-{epoch:02d}.h5', monitor='val_capsnet_acc',

                                          save_best_only=True, save_weights_only=True, verbose=1)

    lr_decay = callbacks.LearningRateScheduler(schedule=lambda epoch: args.lr * (args.lr_decay ** epoch))

    # compile the model

    model.compile(optimizer=optimizers.Adam(lr=args.lr),

                  loss=[margin_loss, 'mse'],

                  loss_weights=[1., args.lam_recon],

                  metrics={'capsnet': 'accuracy'})

    """

    # Training without data augmentation:

    model.fit([x_train, y_train], [y_train, x_train], batch_size=args.batch_size, epochs=args.epochs,

              validation_data=[[x_test, y_test], [y_test, x_test]], callbacks=[log, tb, checkpoint, lr_decay])

    """

    # Begin: Training with data augmentation ---------------------------------------------------------------------#

    def train_generator(x, y, batch_size, shift_fraction=0.):

        train_datagen = ImageDataGenerator(width_shift_range=shift_fraction,

                                          height_shift_range=shift_fraction)  # shift up to 2 pixel for MNIST

        generator = train_datagen.flow(x, y, batch_size=batch_size)

        while 1:

            x_batch, y_batch = generator.next()

            yield ([x_batch, y_batch], [y_batch, x_batch])

    # Training with data augmentation. If shift_fraction=0., also no augmentation.

    model.fit_generator(generator=train_generator(x_train, y_train, args.batch_size, args.shift_fraction),

                        steps_per_epoch=int(y_train.shape[0] / args.batch_size),

                        epochs=args.epochs,

                        validation_data=[[x_test, y_test], [y_test, x_test]],

                        callbacks=[log, tb, checkpoint, lr_decay])

    # End: Training with data augmentation -----------------------------------------------------------------------#

    model.save_weights(args.save_dir + '/trained_model.h5')

    print('Trained model saved to \'%s/trained_model.h5\'' % args.save_dir)

    from utils import plot_log

    plot_log(args.save_dir + '/log.csv', show=True)

    return model

def test(model, data, args):

    x_test, y_test = data

    y_pred, x_recon = model.predict(x_test, batch_size=100)

    print('-'*30 + 'Begin: test' + '-'*30)

    print('Test acc:', np.sum(np.argmax(y_pred, 1) == np.argmax(y_test, 1))/y_test.shape[0])

    img = combine_images(np.concatenate([x_test[:50],x_recon[:50]]))

    image = img * 255

    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + "/real_and_recon.png")

    print()

    print('Reconstructed images are saved to %s/real_and_recon.png' % args.save_dir)

    print('-' * 30 + 'End: test' + '-' * 30)

    plt.imshow(plt.imread(args.save_dir + "/real_and_recon.png"))

    plt.show()

def manipulate_latent(model, data, args):

    print('-'*30 + 'Begin: manipulate' + '-'*30)

    x_test, y_test = data

    index = np.argmax(y_test, 1) == args.digit

    number = np.random.randint(low=0, high=sum(index) - 1)

    x, y = x_test[index][number], y_test[index][number]

    x, y = np.expand_dims(x, 0), np.expand_dims(y, 0)

    noise = np.zeros([1, 10, 16])

    x_recons = []

    for dim in range(16):

        for r in [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25]:

            tmp = np.copy(noise)

            tmp[:,:,dim] = r

            x_recon = model.predict([x, y, tmp])

            x_recons.append(x_recon)

    x_recons = np.concatenate(x_recons)

    img = combine_images(x_recons, height=16)

    image = img*255

    Image.fromarray(image.astype(np.uint8)).save(args.save_dir + '/manipulate-%d.png' % args.digit)

    print('manipulated result saved to %s/manipulate-%d.png' % (args.save_dir, args.digit))

    print('-' * 30 + 'End: manipulate' + '-' * 30)

def load_mnist():

    # the data, shuffled and split between train and test sets

    dataset = read_csv('ZerosOnePowerQuality.csv')

    values = dataset.values

    XY= values

    num_classes = 8

    Y = XY[:,784]

    n_train_hours1 =9000

    x_train=XY[:n_train_hours1,0:784]

    trainY =Y[:n_train_hours1]

    x_test =XY[n_train_hours1:, 0:784]

    testY =Y[n_train_hours1:]

    x_train = x_train.reshape(-1,28,28,1)

    x_test = x_test.reshape(-1,28,28,1)

    y_train = keras.utils.to_categorical(trainY, num_classes)

    y_test = keras.utils.to_categorical(testY, num_classes)

    return (x_train, y_train), (x_test, y_test)

if __name__ == "__main__":

    import os

    import argparse

    from keras.preprocessing.image import ImageDataGenerator

    from keras import callbacks

    # setting the hyper parameters

    parser = argparse.ArgumentParser(description="Capsule Network on MNIST.")

    parser.add_argument('--epochs', default=50, type=int)

    parser.add_argument('--batch_size', default=100, type=int)

    parser.add_argument('--lr', default=0.001, type=float,

                        help="Initial learning rate")

    parser.add_argument('--lr_decay', default=0.9, type=float,

                        help="The value multiplied by lr at each epoch. Set a larger value for larger epochs")

    parser.add_argument('--lam_recon', default=0.392, type=float,

                        help="The coefficient for the loss of decoder")

    parser.add_argument('-r', '--routings', default=3, type=int,

                        help="Number of iterations used in routing algorithm. should > 0")

    parser.add_argument('--shift_fraction', default=0.1, type=float,

                        help="Fraction of pixels to shift at most in each direction.")

    parser.add_argument('--debug', action='store_true',

                        help="Save weights by TensorBoard")

    parser.add_argument('--save_dir', default='./result')

    parser.add_argument('-t', '--testing', action='store_true',

                        help="Test the trained model on testing dataset")

    parser.add_argument('--digit', default=5, type=int,

                        help="Digit to manipulate")

    parser.add_argument('-w', '--weights', default=None,

                        help="The path of the saved weights. Should be specified when testing")

    args = parser.parse_args()

    print(args)

    if not os.path.exists(args.save_dir):

        os.makedirs(args.save_dir)

    # load data

    (x_train, y_train), (x_test, y_test) = load_mnist()

    # define model

    model, eval_model, manipulate_model = CapsNet(input_shape=x_train.shape[1:],

                                                  n_class=len(np.unique(np.argmax(y_train, 1))),

                                                  routings=args.routings)

    model.summary()

    # train or test

    if args.weights is not None:  # init the model weights with provided one

        model.load_weights(args.weights)

    if not args.testing:

        train(model=model, data=((x_train, y_train), (x_test, y_test)), args=args)

    else:  # as long as weights are given, will run testing

        if args.weights is None:

            print('No weights are provided. Will test using random initialized weights.')

        manipulate_latent(manipulate_model, (x_test, y_test), args)

        test(model=eval_model, data=(x_test, y_test), args=args)


2.网络结构

Layer (type) Output Shape Param # Connected to

==================================================================================================

input_1 (InputLayer)            (None, 28, 28, 1)    0                                           

__________________________________________________________________________________________________

conv1 (Conv2D)                  (None, 20, 20, 256)  20992      input_1[0][0]                   

__________________________________________________________________________________________________

primarycap_conv2d (Conv2D)      (None, 6, 6, 256)    5308672    conv1[0][0]                     

__________________________________________________________________________________________________

primarycap_reshape (Reshape)    (None, 1152, 8)      0          primarycap_conv2d[0][0]         

__________________________________________________________________________________________________

primarycap_squash (Lambda)      (None, 1152, 8)      0          primarycap_reshape[0][0]       

__________________________________________________________________________________________________

digitcaps (CapsuleLayer)        (None, 8, 16)        1179648    primarycap_squash[0][0]         

__________________________________________________________________________________________________

input_2 (InputLayer)            (None, 8)            0                                           

__________________________________________________________________________________________________

mask_1 (Mask)                  (None, 128)          0          digitcaps[0][0]                 

                                                                input_2[0][0]                   

__________________________________________________________________________________________________

capsnet (Length)                (None, 8)            0          digitcaps[0][0]                 

__________________________________________________________________________________________________

decoder (Sequential)            (None, 28, 28, 1)    1394960    mask_1[0][0]                   

==================================================================================================

Total params: 7,904,272

Trainable params: 7,904,272

Non-trainable params: 0

____________________________

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容