北邮夺冠CVPR 2018 DeepGlobe比赛,他们是这样做卫星图像识别的

姓名:闫伟  学号:15020150038

转载自:https://zhuanlan.zhihu.com/p/38607998,有删节。

【嵌牛导读】:在刚刚结束的CVPR2018: DeepGlobe Road Extraction Challenge(全球卫星图像道路提取)比赛中,北京邮电大学信息与通信工程学院模式识别实验室张闯老师指导的研究生周理琛同学,脱颖而出,取得第一名的好成绩。本届CVPR规模浩大,有超过3309篇论文投稿,接收979篇论文。此次DeepGlobe道路检测比赛参加队伍众多,包括许多专业级的卫星公司和研究机构(其中,Road Extraction Challenge比赛的第2-4名都来自专业的地图和导航公司)。

【嵌牛鼻子】:CVPR DeepGlobe

【嵌牛提问】:北邮CVPR夺冠的制胜法宝

【嵌牛正文】:

赛题和数据

基于卫星图像的道路检测在城市规划,自动驾驶,应急指挥等领域有很广泛的应用场景。此次比赛的任务是将卫星图像中的道路部分提取出来,即将每个属于道路部分的像素点标注为道路,其他部分标注为背景(属于一个二元分割的问题)。

比赛的数据由全球知名的卫星数据公司数字地球(DigitalGlobe)提供,由FACEBOOK, UBER, IEEE GRSS, DigitalGlobe, CrowdAI, OVSI, Kitware等公司赞助。

比赛分为三个子任务:卫星图像道路提取(84队参与)、房屋提取(26队参与)以及地表覆盖分类(38队参与)。参赛队伍包括MIT, CrowdAI, MapBox, Neuromation公司,EOS数据分析中心,清华大学、同济大学、哈工大、国立台湾大学、商汤科技等团队。

数据集和道路检测示例

比赛数据集包含6226张训练图像,1243张验证图像,以及1101张测试图像。所有的图像尺寸均为1024*1024,图像来源于泰国、印度、印度尼西亚,图像场景包括城市、乡村、荒郊、海滨、热带雨林等多个场景。

从卫星图像中分割道路是一项十分具有挑战的任务,该任务可以应用于地图生成、汽车自动驾驶与导航等多个场景。同时,卫星图像道路分割相较于一般的分割任务,有其独特性和困难性,具体表现为:在卫星图像中,目标道路所占据画幅比例普遍偏小;河流、铁路等又与道路过于相似,甚至人眼也难以判别;道路分叉连通情况也很复杂,这对于道路提取的识别精度有着相当高的要求。

另外,在卫星图像中,道路往往狭窄、且具有先验的连通性,几条道路可能会互相交叉连通,且整体跨度覆盖整张图片,传统的图像分割方法很难适用。这都给卫星图像中的道路检测带来了难度。

夺冠方法详解

数据扩增-图像形态变换:

①、随机翻折:包含水平、竖直、对角线三种翻折方式,每张图片扩增为原来的8倍。

②、随机缩放:将图像随机缩放至多10%。

③、随机偏移:将图像随机上下左右偏移至多10%。

④、随机拉升:将图像随机沿竖直方向或水平方向拉升至多10%。

经过以上四种变换之后,再截取图像中心1024*1024的部分,不足的部分补0。

数据扩增-图像色彩变换:

使用OpenCV,在HSV空间对图像进行色彩变换。在OpenCV中,每个像素的HSV保存在uint8的数据类型中(0~255)。

①、H空间,随机变换(-15~15)。

②、S空间,随机变换(-15~15)。

③、V空间,随机变换(-30~30)。

数据扩增示意图:中心处为原图

模型结构D-LinkNet

北京邮电大学模式识别实验室提出了融合的D-LinkNet方法,该方法在提升网络识别精度的同时,增加网络接收域,保留图像的空间细节信息,并实现多尺度特征融合,有效提升了识别精度、缓解道路连通性问题。

模型总体结构如下:

D-LinkNet34示意图

D-LinkNet使用LinkNet作为基本骨架,使用在ImageNet数据集上与训练好的ResNet作为网络的encoder,并在中心部分添加带有shortcut的dilated-convolution层,使得整个网络识别能力更强、接收域更大、融合多尺度信息。

网络的中心部分可以展开如下图,图中所示的并联结构可以有效的融合多尺度特征。Dilated-convolution可以有效扩张接收域,从上到下对应的接收域分别是31、15、7、3、1,最后将每条支路的结果相加,便得到融合的特征。

网络中心部分展开示意图

损失函数/测试时扩增(TTA)

损失函数的公式如下所示。损失函数包含两部分,其中红框部分是dice coeff loss,绿框部分是Binary cross entropy loss。公式中P指代网络输出的预测结果,GT指代真实标签,N指代batchsize。

损失函数

由于卫星图像具有翻折和旋转不变性,在测试时,我们将图像进行水平、竖直、对角线三种翻折,每张图片预测8次,然后将8次的结果平均。(我们没有旋转图片是出于预测时间的考虑)

比赛结果和技术分享

测试集上最终结果

各项比赛任务优胜者排名表

论文链接:

http://openaccess.thecvf.com/content_cvpr_2018_workshops/w4/html/Zhou_D-LinkNet_LinkNet_With_CVPR_2018_paper.html

代码及PPT:

https://github.com/zlkanata/DeepGlobe-Road-Extraction-Challenge

北京邮电大学模式识别实验室介绍

北京邮电大学模式识别实验室由郭军教授(日本东北学院大学博士、博士生导师、北京邮电大学副校长)于1998年依托信号与信息处理国家重点学科以及模式识别与智能系统信息产业部重点学科而创建,是国内较早开展人工智能领域研究的著名实验室之一,也是信息内容安全技术国家工程实验室的组成部分。

实验室长期从事模式识别、机器学习、数据挖掘、网络搜索等方面的研究,在国际顶级期刊及会议TPAMI、PR、PRL、SCIENCE、 TIP、TIFS、CVPR、ECCV、SIGIR上发表论文多篇,参加人工智能领域国际评测NIST-TREC评测、AI CHALLENGER、阿里天池大数据比赛、863评测等也多次获得优异成绩。实验室的马占宇、高升、郭军、徐雅静、蔺志青老师获得2017年吴文俊人工智能科技进步一等奖。

有心的同学可能也注意到了,由大数据文摘字幕组推出的三门火爆的网红课程就是和北邮模式识别实验室合作进行的。

感兴趣的同学通过以下链接就可以进行学习啦~~~

牛津大学xDeepMind 自然语言处理

https://study.163.com/course/introduction/1004336028.htm

MIT6.S094深度学习与自动驾驶

https://study.163.com/course/introduction/1004938039.htm

斯坦福李飞飞-深度学习计算机视觉

https://study.163.com/course/introduction/1003223001.htm

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,312评论 5 473
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,578评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,337评论 0 333
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,134评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,161评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,303评论 1 280
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,761评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,421评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,609评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,450评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,504评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,194评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,760评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,836评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,066评论 1 257
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,612评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,178评论 2 341

推荐阅读更多精彩内容