单细胞、空间、外显子分析方法更新

作者,Evil Genius

这一篇更新一下单细胞空间做轨迹分析的monocle2的认知以及call snp

多组学的时代你说来了吧,也只有大课题组在做,发的文章都是CNS级别,你说没来吧,做的人又非常少,可以做单细胞 + 空间的都不算很多,再加上VDJ 、 外显子、宏基因组等,就更少了,矛盾的背后其实是科技力量的竞争。

参考文章依然是An atlas of epithelial cell states and plasticity in lung adenocarcinoma,2024年2月发表于nature(IF 64.8)。

第一点,关于轨迹基因的选择

以前做monocle2的时候官方推荐是前1000个高变基因,为了符合Seurat的结果,后来又推荐Seurat计算出来的高变基因,但是基因数量还是上千的,这个时候其实一直感觉有问题的,选择的基因数量太多,导致轨迹老是分不开或者直接断掉,参考的这篇文章更新了这一认知,重点的部分加粗了。

Analysis of differentiation trajectories of lung alveolar and malignant cells was performed using Monocle 2 by inferring the pseudotemporal ordering of cells according to their transcriptome similarity. Monocle 2 analysis of malignant cells from P14 was performed using default parameters with the detectGenes function. Detected
genes were further required to be expressed by at least 50 cells. For construction of the differentiation trajectory of lineage-labelled epithelial cells (GFP+), the top 150 DEGs (FDR-adjusted P value < 0.05, log(fold change) > 1.5, expressed in ≥50 cells) ranked by fold-change of each cell population from NNK-treated samples were used for ordering cells with the setOrderingFilter function. Trajectories were generated using the reduceDimension function with the method set to ‘DDRTree’

作者仅采取了前150个高变基因,这个需要注意了,有分化关系的细胞类型之间渐变的过程基因通常没有颠覆式的变化,大家自己分析的时候高变基因酌情减少一点。

第二点、root的选择

以前我做轨迹分析的时候要求必须先做好细胞注释,确定好细胞类型才可以做轨迹,保证结果的准确性,这里也更新一下认知。

Trajectory roots were selected based on the following criteria:

  • (1) inferred pseudotemporal gradient;
  • (2) CytoTRACE score prediction
  • (3) careful manual review of the DEGs along the trajectory
这个地方不用过多解释,大家应该都明白,分析的时候运用即可。
当然轨迹如果能有多组学数据的话就更加完美了。

第三点、关于空间转录组采用monocle2的情况

先来看看解读

Deconvolution showed that KACs were closer to tumour regions relative to alveolar cells. ST analysis of a KAC-enriched region showed that KACs were intermediary in the transition of alveolar parenchyma to tumour cells. Tumour regions had markedly reduced expression of NKX2-1 and the alveolar signature, a result in line with reduced alveolar differentiation in KM-LUADs

一定程度上讲空间在这种组织细胞类型扎堆分布的情况下可以做monocle2,用来判断分化的程度以及空间分布。包括下面的情况,注释的时候细胞相对扎堆分布。


可惜的是这些结果都放在了附图里面,可见作者也知道不能作为主要的分析结果展示

第四点、识别恶性细胞的方法,融合了多组学的信息(单细胞加外显子)

  • (1) Cluster distribution: owing to the high degree of inter-patient tumour heterogeneity, malignant cells often exhibit distinct cluster distribution compared with normal epithelial cells. Although non-malignant cells derived from different patients are often clustered together by cell type, malignant cells from different patients probably form separate clusters.
  • (2)CNVs: we applied inferCNV to infer large-scale CNVs in each individual cell with T cells as the reference control. To quantify CNVs at the cell level, CNV scores were aggregated using a previously described strategy16. In brief, arm-level CNV scores were computed based on the mean of the squares of CNV values across each chromosomal arm. Arm-level CNV scores were further aggregated across all chromosomal arms by calculating the arithmetic mean value of the arm-level scores using the R function mean.
  • (3)Marker gene expression: expression of lung epithelial lineage-specific genes and LUAD-related oncogenes was determined in epithelial cell clusters.
  • (4)Cell-level expression of KRASG12D mutations: as we previously described, BAM files were queried for KRASG12D mutant alleles, which were then mapped to specific cells. KRASG12D mutations, along with cluster distribution, marker gene expression and inferred CNVs as described above, were used to distinguish malignant cells from non-malignant cells.

最后一点,突变信息匹配到单细胞级别

这个地方真的是被文章的聪明惊呆了。一开始我还不明白为什么构建5‘文库,却没有做VDJ,看了突变明白了。

Mapping KRAS codon 12 mutations. To map somatic KRAS mutations at single-cell resolution, alignment records were extracted from the corresponding BAM files using mutation location information. Unique mapping alignments (MAPQ = 255) labelled as either PCR duplication or secondary mapping were filtered out. The resulting
somatic variant carrying reads were evaluated using Integrative Genomics Viewer (IGV) and the CB tags were used to identify cell identities of mutation-carrying reads. To estimate the VAF of KRASG12D mutation and cell fraction of KRASG12D-carrying cells within malignant and non-malignant epithelial cell subpopulations (for example, malignant cells from all LUADs, malignant cells from KM-LUADs, KACs from KM-LUADs), reads were first extracted based on their unique cell barcodes and BAM files were generated for each subpopulation using samtools. Mutations were then visualized using IGV, and VAFs were calculated by dividing the number of KRASG12D-carrying reads by the total number of uniquely aligned reads for each subpopulation. A similar approach was used to visualize KRASG12D-carrying reads and to calculate the VAF of KRASG12D in KACs of normal tissues from KM-LUAD cases. To calculate the mutation-carrying cell fraction, extracted reads were mapped to the KRASG12D locus from BAM files using AlignmentFile and fetch functions in pysam package. Extracted reads were further filtered using the ‘Duplicate’ and ‘Quality’ tags to remove PCR duplicates and low-quality mappings. The number of reads with or without KRASG12D mutation in each cell was summarized using the CB tag in read barcodes. Mutation-carrying cell fractions were then calculated as the ratio of the number of cells with at least one KRASG12D read over the number of cells with at least one high-quality read mapped to the locus.

生活很好,有你更好

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,230评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,261评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,089评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,542评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,542评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,544评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,922评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,578评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,816评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,576评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,658评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,359评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,920评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,859评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,381评论 2 342

推荐阅读更多精彩内容