深度学习 第10次作业 机器学习 循环序列模型

1 序列模型

序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域。序列模型的输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多,多对一,多对多(个数不同)等情况来针对不同的应用

2 数学符号

  1. x(i)<t>前面的i表示第i个训练样本,t表示某个序列样本中索引位置,如下面的一句话是一个样本,“and”的索引是3,序列的长度用Tx表示,下面句子中Tx=9
  2. 单词是无法直接输入到网络中,所以必须转成数子,用数字来表示单词。方法是将数据集中出现次数最多的10000个单词,用one-hot来表示每一个单词


3 循环神经网络模型

  1. 首先,将第一个单词x<1>x<1>输入神经网络,并预测 y<1>y<1>; 然后,将第二个单词x<2>x<2>输入神经网络,同时将第一步计算的激活值a<1>a<1>也输入到神经网络,共同作用并预测y<2>y<2>; 重复第二步,直至把所有单词都训练完毕。

    循环神经网络中的参数是共享的,从输入到隐藏层的参数表示为wax,水平方向激活值向下一层输入的参数表示为waa,从隐藏层到输出的残水表示为wya 。其前向传播可以如下表示:

    对应的反向传播:

4不同类型的循环神经网络

循环神经可以对应不同的输出类型。第一种是传统标准的网络层,第二是一对多(音乐生成),第三是多对一(情感分析),第四是多对多(输出与输入个数相等,语音识别),第五是多对多(输出与输入个数不一定相等,机器翻译)。


5语言模型和序列生成

语言模型要解决的就是那个句子出现的概率更大,则输出哪个。语言模型如下图所示,首先第一个输出是在无任何提示下输出各个词的概率,第二个输出是在给定第一个输出标签时各个词(10002)输出的概率,以此类推,每一个输出都是在给定条件下一个输出各个单词的概率。


6 对新序列采样

在应用上面训练好的网络时,只需要用numpy取出来第一个输出中单词概率最大的单词,这样就实现了对序列的采样,然后将获得的词作为已知条件,取获取下一个单词。如下图所示:


7 GRU单元

GRU 是一种常见得循环序列模型。GRU即门控循环单元,可以解决循环神经网络的梯度消失问题,进而可以解决上面的远距离也能影响后面的输出。GRU改变了RNN隐藏层单元使其更好的捕捉深层连接,并改善了梯度消失问题。 相比于普通的RNN隐藏层单元,GRU增加了一个C(memory cell)记忆细胞,以增加记忆功能。


8 LSTM 长短时记忆单元

LSTM包括遗忘门、更新门和输出门。LSTM比之GRU更加有效。



双向循环神经网络


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容