第五章 支持向量机(分类)

支持向量机简介

SVM是一个非常通用的机器学习模型,可以用于线性或非线性分类,回归,甚至异常分析。
是最流行的机器学习算法之一,

1.SVM 对特征缩放非常敏感,所以要引入standardScalar
具体是这样:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(Xs)
svm_clf.fit(X_scaled, ys)

2.SVM中有 hard margin 和 soft margin 之分,一个边缘是硬的,一个是软的。
硬也就意味着对于异常值非常敏感,太软了又会发生欠拟合,所以为了更好的预测需要控制软和硬。
为了做到这一点,我们使用超参数 C 。

scaler = StandardScaler()
svm_clf1 = LinearSVC(C=1, loss="hinge", random_state=42)
svm_clf2 = LinearSVC(C=100, loss="hinge", random_state=42)

scaled_svm_clf1 = Pipeline([
        ("scaler", scaler),
        ("linear_svc", svm_clf1),
    ])
scaled_svm_clf2 = Pipeline([
        ("scaler", scaler),
        ("linear_svc", svm_clf2),
    ])

scaled_svm_clf1.fit(X, y)
scaled_svm_clf2.fit(X, y)
C=1与C=100之间的差距

这也意味着如果发生过拟合或者受到异常值的影响可以考虑减小C的值

如果想要做非线性回归,有三种方法
1.多项式特征=>多项式核

from sklearn.datasets import make_moons
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures

polynomial_svm_clf = Pipeline([
        ("poly_features", PolynomialFeatures(degree=3)),
        ("scaler", StandardScaler()),
        ("svm_clf", LinearSVC(C=10, loss="hinge", random_state=42))
    ])

polynomial_svm_clf.fit(X, y)

多项式核

from sklearn.svm import SVC

poly_kernel_svm_clf = Pipeline([
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="poly", degree=3, coef0=1, C=5))
    ])
poly_kernel_svm_clf.fit(X, y)

3.相似特征,高斯径向基函数(Gaussian RBF)=>高斯核

rbf_kernel_svm_clf = Pipeline([
        ("scaler", StandardScaler()),
        ("svm_clf", SVC(kernel="rbf", gamma=5, C=0.001))
    ])
rbf_kernel_svm_clf.fit(X, y)
不同的C和γ对高斯核的影响

高斯核有两个重要参数,C 和 γ(gama),C就是决定边缘软硬,γ 类似于正则化的超参数,γ 越大,决策边界最终就会变得越崎岖复杂,反之则会变光滑。

如何选择一个合适的核

首先要考虑linearSVC,因为最快,尤其是当训练集非常大的时候。
如果训练集不是很大,可以尝试使用高斯RBF核,如果还有其他时间再尝试别的核。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 200,738评论 5 472
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,377评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 147,774评论 0 333
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,032评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,015评论 5 361
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,239评论 1 278
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,724评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,374评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,508评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,410评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,457评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,132评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,733评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,804评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,022评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,515评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,116评论 2 341

推荐阅读更多精彩内容

  • 1. 回顾拉格朗日乘数法 为了找到曲线上的最低点,就从最低的等高线(0那条)开始网上数。数到第三条,等高线终于和曲...
    jiandanjinxin阅读 2,569评论 0 5
  • 如果这世间所有皆是开头美好结局潦倒 那要那些过程有何意义
    我如何舍得与你重逢阅读 212评论 0 0
  • 前言 关于架构的文章,博主很早就想写了,虽说最近比较流行MVVM,但是MVP以及MVC也没有过时之说,最主要还是要...
    刘望舒阅读 1,393评论 2 40
  • 大亲友:我是不是很聪明,快点夸我,我不会骄傲的 鱼大:我怕你骄傲 ................... 大亲友:...
    我有第三只眼阅读 111评论 0 0
  • 不知不觉卖肾买苹果已然成为了流行词汇,代表着新时代人们对物质的追求。但说出来你可能不信在70年代,有人会为了...
    上尉诗人Captain阅读 2,211评论 0 0