EM聚类

原理

“最大似然”,英文是 Maximum Likelihood,Likelihood 代表可能性,所以最大似然也就是最大可能性的意思。

最大似然:根据我们的经验,相同年龄下男性的平均身高比女性的高一些

最大似然估计: 它指的就是一件事情已经发生了,然后反推更有可能是什么因素造成的。还是用一男一女比较身高为例,假设有一个人比另一个人高,反推他可能是男性。最大似然估计是一种通过已知结果,估计参数的方法。

EM 算法是一种求解最大似然估计的方法,通过观测样本,来找出样本的模型参数。

练习

假设我们有 A 和 B 两枚硬币,我们做了 5 组实验,每组实验投掷 10 次,每次只能只有A或者B一枚硬币。那么我们统计出现每组实验正面的次数,实验结果如下:

虽然B出现正面次数为5的概率比A的小,但是也不是0。这时候我们应该考虑进这种可能的情况,那么这时候,第一轮实验用的A的概率就是: 0.246 / (0.246 + 0.015) = 0.9425;用B的概率就是1-0.9425 = 0.0575。

有0.9425的概率是硬币A,有0.0575的概率是硬币B,不再是非此即彼。这样我们在估计θAθB时,就可以用上每一轮实验的数据,而不是某几轮实验的数据,显然这样会更好一些。这一步,我们实际上估计的是用A或者B的一个概率分布,这步就称作E步

以硬币A为例, 第一轮的正面次数为5相当于 5次正面,5次反面

0.9425 * 5 = 4.7125(这是正面),0.9425 * 5 = 4.7125(这是反面)

新的θA = 4.22 / (4.22+7.98)=0.35 这样,改变了硬币A和B的估计方法之后,会发现,新估计的θA会更加接近真实的值,因为我们使用了每一轮的数据,而不是某几轮的数据。 这步中,我们根据E步求出了硬币A和B在每一轮实验中的一个概率分布,依据最大似然法则结合所有的数据去估计新的θAθB, 被称作M步

总结

EM算法可以先给无监督学习估计一个隐状态(即标签),有了标签,算法模型就可以转换成有监督学习,这时就可以用极大似然估计法求解出模型最优参数。其中估计隐状态流程应为EM算法的E步,后面用极大似然估计为M步。

EM 算法相当于一个框架,你可以采用不同的模型来进行聚类,比如 GMM(高斯混合模型),或者 HMM(隐马尔科夫模型)来进行聚类。

  • GMM 是通过概率密度来进行聚类,聚成的类符合高斯分布(正态分布)。

  • 而 HMM 用到了马尔可夫过程,在这个过程中,我们通过状态转移矩阵来计算状态转移的概率。HMM 在自然语言处理和语音识别领域中有广泛的应用。

Sklearn

GaussianMixture(n_components=1, covariance_type='full', max_iter=100)

  • n_components:即高斯混合模型的个数,也就是我们要聚类的个数,默认值为 1。如果你不指定 n_components,最终的聚类结果都会为同一个值。
  • covariance_type:代表协方差类型。一个高斯混合模型的分布是由均值向量和协方差矩阵决定的,所以协方差的类型也代表了不同的高斯混合模型的特征。协方差类型有 4 种取值:
    covariance_type=full,代表完全协方差,也就是元素都不为 0;
    covariance_type=tied,代表相同的完全协方差;
    covariance_type=diag,代表对角协方差,也就是对角不为 0,其余为 0;
    covariance_type=spherical,代表球面协方差,非对角为 0,对角完全相同,呈现球面的特性。
  • max_iter:代表最大迭代次数,EM 算法是由 E 步和 M 步迭代求得最终的模型参数,这里可以指定最大迭代次数,默认值为 100。
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.mixture import GaussianMixture
#from sklearn import datasets
from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data
y = iris.target

# 采用Z-Score规范化数据,保证每个特征维度的数据均值为0,方差为1
ss = StandardScaler()
X = ss.fit_transform(X)

#绘制数据分布图
plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend()
plt.show()
 
# 构造GMM聚类
gmm = GaussianMixture(n_components=3, covariance_type='full')
gmm.fit(X)
# 训练数据
label_pred = gmm.predict(X)
print('聚类结果', '\n', label_pred)  # (150,) [1 1 1 1 1 2 2 2 2 2 0 2 2 2 2 0 2 2 ...]
print('真实类别', '\n', y)

x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
print(x0.shape, x1.shape, x2.shape)  # (62, 4) (50, 4) (38, 4)
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend()
plt.show()
from sklearn.metrics import calinski_harabasz_score
print(calinski_harabasz_score(X, label_pred))
# 指标分数越高,代表聚类效果越好,也就是相同类中的差异性小,不同类之间的差异性大。当
# 然具体聚类的结果含义,我们需要人工来分析,也就是当这些数据被分成不同的类别之后,具体每个类表代表的含义。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容