从Hadoop到Spark,看大数据框架的前世今生!

谈到大数据框架,不得不提Hadoop和 Spark,今天我们进行历史溯源,帮助大家了解Hadoop和Spark的过去,感应未来。

在Hadoop出现前人们采用什么计算模型呢?是典型的高性能HPC workflow,它有专门负责计算的compute cluster,cluster memory很小,所以计算产生的任何数据会存储在storage中,最后在Tape里进行备份,这种workflow主要适用高速大规模复杂计算,像核物理模拟中会用到。

HPC workflow在实际应用中存在一些问题,这些问题促进了Hadoop的出现。

首先如果想对大量进行简单计算,比如对Search logs 进行“what are the popular keywords”计算,这时是否可以用HPC workflow?当然可以,但却并不适合,因为需要做的计算非常简单,并不需要在 high performance compute cluster中进行。

其次由于数据量大,HPC workflow是I/O bound,计算时间只有1个微秒,但剩下的100个微秒可能都需要等数据,这时候compute cluster就会非常空闲,因此HPC同样不不适用于 specific use。

在这里我还是要推荐下我自己建的大数据学习交流qq裙:458345782, 裙 里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴。

另外HPC主要在政府部门、科研等领域使用,成本高昂,不适合广泛推广。

如果不能把数据移到计算的地方,那为什么不转换思维,把计算移到数据里呢?

所以Google在2003至2006年发表了著名的三大论文——GFS、BigTable、MapReduce,解决怎么样让framework 挪到有数据的地方去做,解决了数据怎么存储,计算及访问的问题。

在Google 发出三大论文后,Yahoo用相同的框架开发出JAVA语言的project,这就是Hadoop。Hadoop Ecosystem在十年多时间发展的如火如荼,其核心就是HDFS,Mapreduce和Hbase。

HDFS很好地实现了数据存储的以下特性要求:

Cheap

High availability

High throughput

High scalability

Failure detection and recovery

大家从图中可以看到HDFS数据读取和写入的过程,这个Architecture非常稳定,当数据量越来越大时Namenode从一个发展为多个,使内存增大,产生了Namenode Federation。

数据存储已经实现,那如何进行计算呢?

如果有1PB size log,当需要计数时, 一个machine肯定无法计算海量数据,这时候可能需要写Multi-threads code,但也会存在进程坏了,性能不稳定等问题,如果Data Scientist还要写multi-threats程序是非常浪费时间的,这时候Mapreduce 就应运而生,目的是让framework代替人来处理复杂问题,使人集中精力到重要的数据分析过程中,只需要通过code Map和Reduce就可以实现数据运算。

让我们来思考下:在一次Mapreduce中至少需写硬盘几次?

至少3次!

开始从HDFS中读取数据,在Mapreduce中计算,再写回HDFS作为 Intermediate data,继续把数据读出来做reduce,最后再写回HDFS,很多时候做meachine learning需要不断迭代,一次程序无法算出最终结果,需要不断循环。

循环过程一直往硬盘里写,效率非常低,如果把中间数据写入内存,可以极大提高性能,于是Spark出现了

当把数据从HDFS中读出来到内存中,通过spark分析,Intermediate data再存到内存,继续用spark进行分析,不断进行循环,这样Spark会很大地提高计算速度。


Spark在2009年由AMPLab开发,吸取了很多Hadoop发展的经验教训,比如Hadoop对其他语言支持不够,Spark提供了Java,Scala,Python,R这些广泛受到Data Scientist欢迎的语言

那Spark与Hadoop的区别有什么?

Spark比Hadoop使用更简单

Spark对数据科学家更友好(Interactive shell)

Spark有更多的API/language支持(Java, python, scala)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • 此刻我有多难过,其实没有有一丝解脱。 多年后再看到这件事我憋屈的背锅,我只想说,当时的你的确觉得无所谓不会有太大的...
    宋小朝阅读 63评论 0 0
  • 图书:别再为小事抓狂:小事永远只是小事 作者:(美)理查德·卡尔森 字数:506 除了自己的想法,没有任何事情可以...
    幸福萍宝阅读 131评论 0 0
  • 【日精进打卡第209天】 【知-学习】 1、背诵大纲1遍,大学0遍 【经典名句分享】 不以物喜,不以己悲 【行-实...
    吴佳妮_ab17阅读 65评论 0 0
  • 今天是24节气的春分,节气日历的大坑啊……自己挖的坑,哭着也要填完。所以,那就来吧~~ 成品图镇楼~~ 纸:获多福...
    心蓝丫头阅读 4,603评论 37 167