摩尔定律:始于半导体 终于物理极限?

姓名:李晓旭     学号:16030130037

转载自:http://ee.ofweek.com/2017-11/ART-8130-2800-30177960.html

【嵌牛导读】在信息技术发展浪潮中,浪潮涌起的高度的衡量一度成为业界的“心患”。换句话说,如何估量信息技术进步的速度成了困扰业内人士许久的难题。籍此背景之下,英特尔创始人之一戈登·摩尔通过大量数据调研整理,于1965年,正式提出“摩尔定律”。

【嵌牛鼻子】摩尔定律

【嵌牛提问】你觉得制造工艺的物理极限是多少呢?

【嵌牛正文】

        在信息技术发展浪潮中,浪潮涌起的高度的衡量一度成为业界的“心患”。换句话说,如何估量信息技术进步的速度成了困扰业内人士许久的难题。籍此背景之下,英特尔创始人之一戈登·摩尔通过大量数据调研整理,于1965年,正式提出“摩尔定律”。迄今为止,此定律已历经了半世纪风雨,对于半导体产业发展,更是产生了不可磨灭的作用。

何为“摩尔定律”?

        在文章《让集成电路填满更多的组件》中,摩尔预言,半导体芯片中集成的晶体管和电阻数量将每年增加一倍。随后不久,摩尔另外撰写论文声明,将“每年增加一倍”修改为“每两年增加一倍”。详细地说,摩尔定律即为:当价格不变时,半导体芯片中可容纳的元器件数目,约两年便会增加一倍,其性能也将同比提升。

        当然,通过后来数十年的数据证明,半导体芯片中可容纳的元器件数目,约18个月便将增加一倍(即摩尔前后预测的平均值)。对于此,摩尔表示,他并未提过“每18个月增加一倍”推论,而且根据其数据图显示,这个变化周期便是24个月。

        事实上,作为一种对发展趋势的分析预测规则,摩尔定律一直在质疑与自我证明中徘徊。由于集成度与晶体管价格成反比的特性,使得摩尔定律成为了经济学效益的一种推测手段。以晶圆厂生产IC为例,在制程技术不断进步的前提下,每隔18个月,IC的产量将提升一倍,换个角度来看,其成本将降低50%。与此同时,在半导体行业制程技术发展的过程中,摩尔定律渐渐成为衡量半导体行业发展脚步的一道标杆,如果每个18个月半导体企业的制程工艺未达到摩尔定律预测的数据,那么对不起,有可能你已经“Out”了(即落后于目前半导体行业的平均水平),从这方面来看,这种推测方式对于半导体行业的经济效益研究起到了一种良好的辅助作用。

摩尔定律的质疑与自我证明

        迄今为止,摩尔定律“问世”已然五十载有余,在半导体芯片制程工艺水平飞速提升的同时,人们不禁有些疑问,半导体芯片单位面积可集成的元件数量最终将达到多少?摩尔定律会一直存在下去吗?


        其实,半导体芯片单位面积可集成的元件数量最终将达到多少这个问题并没有明确的答案,但据专家预测,半导体芯片制程工艺的物理极限为2-3nm,以此推算,摩尔定律似乎也只能“存活”10年之久。

        摩尔定律会不会过时?摩尔定律还能生存多久?这个话题已经探讨了数十年之久,比如当半导体芯片主流制程技术为90nm时,有人认为45nm将成为物理极限;当制程技术达到45nm时,有的观点认为22nm将成为极限。有句俗语叫作“好刀不怕磨”,摩尔定律正是这把好刀。

        那么何为物理极限呢?从技术方面来看,随着晶体管尺寸的不断缩小,源极和漏级之间的漏电现像会增大,从而导致晶体管无法正常工作。基于此环境之下,三星推出的3D晶体管技术,很好的解决了此问题,这也使得制程工艺再进一步,从而逐渐达到如今的10nm。

        在今年9月份举办的“英特尔精尖制造日”峰会中,英特尔以14nm和10nm制程工艺为例,通过其晶体管密度以及成本对比,再一次体现出了摩尔定律的准确度。英特尔高级院士、技术与制造事业部制程架构与集成总监Mark Bohr也表示,在技术层面,英特尔依旧坚守Tick-Tock战略,这也是摩尔定律最好的体现。

摩尔定律的影响

        起初,摩尔定律的提出只为预测半导体行业的发展趋势,但是随着其在半导体行业的声名鹊起,外界各行各业对于竞相仿效,从而衍生出多版本的“摩尔定律”,其深远影响使我们的生活获益良多。


        在经济方面,随着制程工艺的逐渐提升,晶体管体积也越来越小,但性能却得到了较大的提升,成本也随之不断降低。

        在技术方面,摩尔的推演总结将复杂、昂贵的计算普及为生活的必需品,从数据分析,目前这些的创新都源于摩尔的发现。

        在社会影响方面,计算的普及改变了我们的生活方式,也推动了科技以及社会的发展,这对于各行各业来说,都是一大幸事。

摩尔定律会否消亡?

        事实上,自摩尔定律被推出后,其存亡时间一直是业界所争论不休的话题。以如今来说,当半导体行业无数业内人士发声表示,摩尔定律将消亡时,科技界却爆出一则惊人消息:1nm制程工艺“问世”。这则消息是由劳伦斯伯克利国家实验室传出的,其实验室研究人员阿里·加维表示:“此项研究说明,我们的晶体管将不再局限5nm栅极,如果使用适当的半导体材料,摩尔定律将继续有效。”

        据了解,加维所说的适当的半导体材料为二硫化钼,硅材料在栅极长度为5nm甚至更长时,其优势相当明显,但其栅极长度在5nm之下时,将会产生“隧道效应”,从而阻止电流从源极流向漏极。这种情况将会使电子失控,无法达到我们想要的效果。而二硫化钼则有所不同,在此环境之下,它流动的电子更重,所以可以通过更短的栅极来控制电流从源极流向漏极。通过一系列实验测试,劳伦斯伯克利国家实验室研究人员摒弃传统的光刻技术,选择1nm的碳纳米管作为栅极,从而更好的配合二硫化钼晶体管控制其电子流动。

        这则实验研究成果再次证明了摩尔定律依旧存在,而从目前来看,似乎摩尔定律的消亡直接取决于半导体芯片制程工艺的物理极限。如果半导体芯片制程工艺未达极限,那么摩尔定律将一直“活着”。其实,摩尔定律虽然源于半导体行业,但并不会终止于半导体行业,其思想与观点奠定了所有现代技术丰富的基础,其创新的相关产品已经完美的与我们生活融合在一起。未来,它将代表一种趋势一直存在于物联网、医疗以及教育等各个领域。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容