坐标变换(4)—旋转矩阵

1. 群

群(Group)是一种集合加上一种运算的代数结构。我们把集合记作A,运算记作\cdot, 那么群可以记作G = (A, ·)。群要求这个运算满足以下几个条件:

  1. 封闭性: \forall a_1, a_2 \in A, a_1\cdot a_2 \in A.
  2. 结合律: \forall a_1, a_2, a_3 \in A, (a_1\cdot a_2)\cdot a_3 = a_1 \cdot (a_2 \cdot a_3).
  3. 幺元: \exists a_{0} \in A, \quad s.t. \quad \forall a \in A, \quad a_{0} \cdot a=a \cdot a_{0}=a
  4. 逆: \forall a \in A, \exists a^{−1} \in A, \quad s.t. \quad a · a^{−1} = a_0.

2. special orthogonal group

定义参考坐标系(fix frame)为S,定义body frame为bb在fixed frameS下经过一定的旋转,对应的旋转矩阵为R

坐标系b的三个坐标轴,即基,\hat{x}_{b},\hat{y}_{b},\hat{z}_{b},同时R=[\hat{x}_{b},\hat{y}_{b},\hat{z}_{b}],满足以下条件,

  1. 单位向量
    \begin{aligned} &r_{11}^{2}+r_{21}^{2}+r_{31}^{2}=1\\ &r_{12}^{2}+r_{22}^{2}+r_{32}^{2}=1\\ &r_{13}^{2}+r_{23}^{2}+r_{33}^{2}=1 \end{aligned}
  2. 正交
    \hat{x}_{b}\cdot\hat{y}_{b}=0,\hat{x}_{b}\cdot\hat{z}_{b}=0,\hat{z}_{b}\cdot\hat{y}_{b}=0,即
    \begin{array}{l} r_{11} r_{12}+r_{21} r_{22}+r_{31} r_{32}=0 \\ r_{12} r_{13}+r_{22} r_{23}+r_{32} r_{33}=0 \\ r_{11} r_{13}+r_{21} r_{23}+r_{31} r_{33}=0 \end{array}
    上面两个性质可以写成矩阵的形势,
    RR^T=I
    此外,坐标系b的三个坐标轴还需要遵守右手坐标系,例如\hat{x}_{b}\times\hat{y}_{b}=\hat{z}_{b},其中\times表示叉乘。
    在线性代数上有如下的一个公式,当我们知道一个3\times3矩阵M的三列为a,b,c时,我们可以求得矩阵的行列式值为,

\operatorname{det} M=a^{\mathrm{T}}(b \times c)=c^{\mathrm{T}}(a \times b)=b^{\mathrm{T}}(c \times a)
所以,我们可以得到,
det R=1
至此,我们推导出了旋转矩阵满足的两个条件。在数学上,将满足上述两个条件的3\times3的矩阵统称为special orthogonal group SO(3),即3维的特殊正交群,容易验证R符合群的封结幺逆的性质,此外对于任意的3维列向量xy=Rxx具有相同的长度(2范数)。

\|y\|^{2}=y^{\mathrm{T}} y=(R x)^{\mathrm{T}} R x=x^{\mathrm{T}} R^{\mathrm{T}} R x=x^{\mathrm{T}} x=\|x\|^{2}

3. 旋转矩阵的使用

  1. 描述一个坐标系
  2. 改变向量或者坐标系的参考坐标系
  3. 旋转一个坐标系或者向量

3.1 描述坐标系

第一种情况下,旋转矩阵的三列分别对应坐标系的三个坐标轴,即基,

考虑以上三个坐标系,其对应的描述为,
R_{a}=\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right], \quad R_{b}=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right], \quad R_{c}=\left[\begin{array}{ccc} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{array}\right]

而空间中的同一点P,在三个坐标系中的描述分别为,

p_{a}=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right], \quad p_{b}=\left[\begin{array}{c} 1 \\ -1 \\ 0 \end{array}\right], \quad p_{c}=\left[\begin{array}{c} 0 \\ -1 \\ -1 \end{array}\right]

R_{a}p_a=R_bp_b=R_cp_c=\left[\begin{array}{l} 1 \\ 1 \\ 0 \end{array}\right]

3.2 改变参考坐标系

假设旋转矩阵R_{ab},描述了b相对于a的旋转,R_{bc}描述了c相对于b的旋转,则R_{ac}c相对于a的旋转,
R_{ac}=R_{ab}R_{bc}
向量pb坐标系的向量为p_b,则在a坐标系下p_a为,
R_{ab}p_b=p_a

3.3 旋转一个坐标系或者向量

在坐标系a下旋转一个向量p_a(同一坐标系下),会产生另外一个向量p\prime _a
p\prime _a=Rp_a

而对一个坐标系乘以一个旋转矩阵,则有不同的意义,分为左乘右乘,下面分别介绍,其中参考坐标系为S,body frame为bSZ轴转90度生成bR_{sb}表示bS下的描述,R仅表示某一旋转矩阵(绕着x转30度),下面借助matlab来进行可视化,

3.3.1 左乘

R_sb = rotz(90)
R = rotx(30)
R_1 =  R * R_sb 
tranimate(R_1)
R_sb =

     0    -1     0
     1     0     0
     0     0     1
     
R =

    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660
R_1 =

         0   -1.0000         0
    0.8660         0   -0.5000
    0.5000         0    0.8660

最终结果,

由上面两图可以看到,R左乘R_{sb},是顺着原来S中的X轴旋转了30度。因此左乘,R是在S坐标系下的描述。

3.3.2 右乘

R_sb = rotz(90)
R = rotx(30)
R_1 =  R_sb * R 
tranimate(R_1)
R_sb =

     0    -1     0
     1     0     0
     0     0     1
R =

    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660
R_1 =

         0   -0.8660    0.5000
    1.0000         0         0
         0    0.5000    0.8660

最终结果,

由上面两图可以看到,R右乘R_{sb},是顺着b中的X轴旋转了30度。右乘,R是在b坐标系下描述。
其实关于左乘和右乘,在前面的文章中介绍过旋转矩阵的列向量是bS中的描述,右乘相当于,
\begin{bmatrix} \hat{x}_{b},\hat{y}_{b},\hat{z}_{b} \end{bmatrix}R=\begin{bmatrix} r_{11}\hat{x}_{b}+r_{21}\hat{y}_{b}+r_{31}\hat{z}_{b},r_{12}\hat{x}_{b}+r_{22}\hat{y}_{b}+r_{32}\hat{z}_{b},r_{13}\hat{x}_{b}+r_{23}\hat{y}_{b}+r_{33}\hat{z}_{b} \end{bmatrix}
此时,矩阵的乘积的每一列都是b所对应基的线性组合,所以R此时的意义肯定是在b坐标系下描述。
同理,前面文章提到过,旋转矩阵的行向量是\{S\}\{b\}中的描述,此时\{b\}是参考坐标系,
R\begin{bmatrix} \hat{x}_{s} \\ \hat{y}_{s} \\ \hat{z}_{s} \end{bmatrix}=\begin{bmatrix} r_{11}\hat{x}_{s}+r_{12}\hat{y}_{s}+r_{13}\hat{z}_{s}\\ r_{21}\hat{x}_{s}+r_{22}\hat{y}_{s}+r_{23}\hat{z}_{s}\\ r_{31}\hat{x}_{s}+r_{32}\hat{y}_{s}+r_{33}\hat{z}_{s} \end{bmatrix}
此时,矩阵的乘积的每一行都是S所对应基的线性组合,所以R此时的意义肯定是在S坐标系下描述。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容