学学Elasticsearch:Term查询和全文查询,一文详解

image

前言

在 Elasticsearch 中,Term 查询和全文查询是两种完全不同的处理方式,那么本文就彻底地来理清这两种查询之间的关系。

我们重新创建一个新的索引 index_002,并插入以下数据

POST /_bulk
{"index":{"_index":"index_002"}}
{"id":"1","name":"lonely wolf","address":null,"count":1}
{"index":{"_index":"index_002"}}
{"id":"2","name":"lonely hello wolf","address":[],"count":3}
{"index":{"_index":"index_002"}}
{"id":"3","name":"lonely hello word wolf","address":"[广东]","count":1}
{"index":{"_index":"index_002"}}
{"id":"4","name":"Lonely Wolf","address":"['广东','深圳']","count":2}
{"index":{"_index":"index_002"}}
{"id":"5","name":"wolf","address":null,"count":1}

Term 查询

Term 查询一般表达的是最小单位查询,也就是说对我们传入的关键字会作为一个整体进行查询,而不会进行分词。

如下查询,满足条件的只有第一条数据,需要注意的是对 text 类型字段需要加上 .keyword:

POST index_001/_search
{
  "query": {
    "term": {
      "name.keyword": {
        "value": "lonely wolf"
      }
    }
  }
}

这里如果不加上 .keyword 则不会返回任何结果,这是因为 text 类型的字段会被倒排索引进行存储,倒排索引会利用分析器将文本进行分词,我们可以利用分词器来查看下分词结果:

POST /_analyze
{
 "analyzer": "standard",
 "text": ["lonely wolf"]
}

image

可以看到,lonely wolf 被分成了 lonely 和 wolf 两个单词,所以我们将 lonely wolf 作为一个进行查询自然是无法查询到结果的。

这里有个地方需要注意,如果我们存入的是大写单词,如 Lonely Wolf,分词器也是一样的结果,也就是会将大写字母统一转化为小写进行存储,所以进行全文查询的时候也是无法查询出结果。

exists 查询

用来判定是否存在某一个字段,返回包含字段的任何索引值的文档。

GET index_002/_search
{
  "query": {
    "exists": {
      "field": "address"
    }
  }
}

这里返回的结果就是第三条和第四条数据,像 null 值和空数组 [] 不会被返回。

如果想要返回 null 值或者空数组 [] 的数据,那么可以利用 bool 查询的 must_not 语句:

GET index_002/_search
{
  "query": {
    "bool": {
      "must_not": [
        {
          "exists": {"field": "address"}
        }
      ]
    }
  }
}

fuzzy 查询

用于近似查询,比如我们有时候在用百度搜索的时候,输错了字会被纠正:

image

一般情况下有一个单词错误的情况下,fuzzy 查询可以找到另一个近似的词来代替,主要有以下场景:

  • 修改一个单词,如:box--->fox。
  • 移除一个单词,如:black-->lack。
  • 插入一个单词,如:sic-->sick。
  • 转换两个单词顺序,如:act-->cat。

为了可以查询到这种近似的单词,fuzzy 查询需要创建一个所有近似词的集合,这样搜索的时候就可以采用精确查询找到近似的词来代替查询。

比如下面这个查询就可以查询出前面四条数据,同样的,value 修改为 loneyl 或 lonelyy 或 loneyle 都能查询出前面四条数据:

GET index_002/_search
{
  "query": {
    "fuzzy": {
      "name": {
        "value": "lonel"
      }
    }
  }
}

ids 查询

通过文档 id 进行查询返回,这里的 id 为文档中的 _id。

GET index_002/_search
{
  "query": {
    "ids": {
      "values": ["id1","id2"]
    }
  }
}

prefix 查询

通过指定字段的前缀进行查询。

GET index_002/_search
{
  "query": {
    "prefix": {
      "name": {
        "value": "lo"
      }
    }
  }
}

range 查询

通过范围进行查询。

GET index_002/_search
{
  "query": {
   "range": {
     "id": {
       "gte": 1,
       "lte": 2
     }
   }
  }
}

其中:

  • gt:表示大于。
  • gte:表示大于等于。
  • lt:表示小于。
  • lte:表示小于等于。

这种范围查询还可以用于日期的范围查询,此时将会对日期进行毫秒数转换后进行查询,如下面的例子就是查询昨天到今天的区间,而且可以通过 time_zone 指定时区:

GET _search
{
    "query": {
        "range" : {
            "timestamp" : {
                "gte" : "now-1d/d",
                "lt" :  "now/d"
            }
        }
    }
}

regexp 查询

通过正则表达式进行查询。如下例子可以查询出 lon 开头的所有数据:

GET index_002/_search
{
  "query": {
   "regexp": {
     "name": "lon.*"
   }
  }
}

term 查询

返回一个或者多个单词精确匹配的文档。

# 返回前面四条数据
GET index_002/_search
{
  "query": {
   "term": {
     "name": {
       "value": "lonely"
     }
   }
  }
}
# 只返回第一条数据
GET index_002/_search
{
  "query": {
   "term": {
     "name.keyword": {
       "value": "lonely wolf"
     }
   }
  }
}

terms 查询

terms 查询和 term 查询是一个含义,区别只是 terms 可以一次精确匹配多个词。

# 返回全部五条数据
GET index_002/_search
{
  "query": {
   "terms": {
     "name": [
       "lonely",
       "wolf"
     ]
   }
  }
}

terms_set 查询

terms_set 查询和 terms 查询是一样的查询规则,不同的是 terms_set 查询可以定义匹配词项的数量,定义的数量只能从文档中的某一列中进行获取或者使用脚本进行配置:

# 这里只能查询第一和第三两条数据,因为 `Wolf` 中的首字母大写,无法被精确匹配上,count列不能是text类型
GET index_002/_search
{
  "query": {
    "terms_set": {
      "name": {
        "terms": [
          "lonely",
          "Wolf"
        ],
        "minimum_should_match_field": "count"
      }
    }
  }
}

type 查询

指定类型查询,type 类型在 7.0 版本已经标注为过期,8.0 版本已经被废弃。

wildcard 查询

通过通配符进行查询,这个可以理解为是简易版本的正则表达式查询:

GET index_002/_search
{
  "query": {
   "wildcard": {
     "name": {
       "value": "lone*"
     }
   }
  }
}

全文查询

高级全文查询通常用于对全文字段 text 类型(比如电子邮件的正文)进行全文查询。全文查询在搜索和索引时,都会对字段进行分词处理,查询之前会先对输入的词进行分词处理,然后对每个词项进行查询,最后将结果进行合并,并根据算分结果将结果进行返回。

全文查询也包括很多种,在这里我们主要介绍 match 查询和 match_phrase 查询。

match 查询

match 查询是执行全文搜索的标准查询,包括模糊匹配选项。如下就是一个标准的 match 查询语句:

# 返回全部5条数据
POST index_002/_search
{
  "query": {
    "match": {
      "name": "lonely wolf"
    }
  }
}

对比 term 查询:

# 没有满足条件的结果
POST index_002/_search
{
  "query": {
    "term": {
      "name": "lonely wolf"
    }
  }
}
# 返回第一条数据
POST index_002/_search
{
  "query": {
    "term": {
      "name.keyword": "lonely wolf"
    }
  }
}

根据上面几个查询的结果我们可以得出 term 查询和全文 match 查询的区别:

  • term 查询会将搜索关键字作为一个整体进行查询。
  • match 查询会将搜索关键字进行分词,且分词后默认是 or 的关系。

根据这两个结论,也可以很明显知道,一般不对 text 类型字段采用 term 查询,因为 text 类型字段会被分词索引,可能会导致无法被 term 查询匹配出结果。

再看下面这个例子,会返回第二和第三两条数据(分词后的搜索和顺序无关):

# 查询出最少匹配中3个词项的结果
POST index_002/_search
{
  "query": {
    "match": {
      "name": {
        "query": "hello wolf lonely",
        "operator": "or",
        "minimum_should_match": 3
      }
    }
  }
}

match_phrase 查询

match_phrase 会将输入的搜索关键字作为一个短语进行查询,这点看来类似于 term 查询,但是 match_phrase 查询内嵌了一个参数 slot 用来定义短语中允许的空隙,默认是 0 表示中间不允许有其他词:

POST index_002/_search
{
  "query": {
    "match_phrase": {
      "name": {
        "query": "lonely wolf"
      }
    }
  }
}

这条语句的结果就能查询出第一和第四条数据,注意,虽然第四条数据中的 lonely wolf 是大写字母开头,但是索引的时候会将其转为小写进行索引,所以也能查询出结果。

此时我们加入 slot=1 条件进行查询,表示允许短语之间存在一个间隙,所以此时能查询出第二条数据:

POST index_002/_search
{
  "query": {
    "match_phrase": {
      "name": {
        "query": "hello wolf lonely",
        "slop": 1
      }
    }
  }
}

总结

本文主要讲述了 Term 查询和全文查询中 match 查询的区别,总结起来主要有以下几点:

  1. Term 查询对搜索关键字不会进行分词处理,而是作为一个整体进行查询。
  2. 全文查询如 match 等查询,会对搜索关键字进行分词,并对每个词项进行搜索,默认 or 的关系进行合并,并最终算法返回结果。
  3. 对 Text 类型字段,索引时会进行分词,大写字母会转成小写,所以如果用 Term 或者 match_phrase 查询时要注意因分词而对查询结果产生的影响。

作者:双子孤狼
原文链接:https://www.cnblogs.com/lonely-wolf/p/14975414.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容