如何使用GEOquery和limma完成芯片数据的差异表达分析

如何分析芯片数据

我最早接触的高通量数据就是RNA-seq,后来接触的也基本是高通量测序结果而不是芯片数据,因此我从来没有分析过一次芯片数据,而最近有一个学员在看生信技能树在腾讯课堂发布的课程GEO数据库表达芯片处理之R语言流程遇到了问题问我请教,为了解决这个问题,我花了一个晚上时间学习这方面的分析。 :这篇文章不会介绍R语言的安装和使用,也不会介绍GEO数据库的构造

数据的获取

数据获取有两种方式,R包GEOquery解析和手动下载。其中前面一种最方便,完成了手动数据下载和Bioconductor常见数据结构ExpressionSet的构造,关于这个数据结构的具体介绍看Bioconductor的介绍或者视频,简言之,就是用于存放 实验信息, 分组信息表达信息, 方便后续调用。

library(GEOquery)
gset <- getGEO("GSE13535", GSEMatrix =TRUE, AnnotGPL=TRUE )
show(gset)
ExpressionSet

一般而言GEOquery解析都是首选,除非你提供的GSE号还没被GEOquery记录或者说网络速度感人,以及你不觉得别人提供的矩阵是你所需要的,你才会决定去手工下载。分为两种情况,一种是下载赛默飞的下机原始数据格式CEL,一种是下载单个样本表达量向量或者含有所有样本的表达量矩阵。

数据下载

先说第一种,可以直接点击http下载到tar打包的数据, 然后解压缩得到所有的CEL文件

setwd("F:/Project/GEO_project/")
library(affy)
affy.data <- ReadAffy()
length(affy.data)
# 13
eset.rma <- rma(affy.data)
exprSet <- exprs(eset.rma)
write.table(exprSet, "expr_rma_matrix.txt", quote=F, sep="\t")
  • ReadAffy: 读取当前文件下的CEL格式文件,同时第一次还会从bioconductor上下载hugene10stv1用来注释cel文件。
  • rma: 基于robust multi-arrary average(RMA)算法衡量表达量,从而将AffyBatch对象转换成ExpressionSet
  • exprs: 获取ExpressionSet中的表达量矩阵
  • write.table: 将表达量矩阵信息保存到本地

然后是第二种,以所有样本的表达矩阵为例,可以用浏览器到ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE42nnn/GSE42589/matrix/下载,如果你会用Linux的话,可以用wget -4 ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE42nnn/GSE42589/matrix/GSE42589_series_matrix.txt.gz, 才1.7M。解压缩这个文件后,有一个txt文件, 这个txt分为两个部分。第一个部分是以"!"开头的样本的所有信息,如实验平台、处理、以及分组等信息。第二个部分则是后面的表达量信息,

Series Matrix Files
expr.df <- read.table(file = "GSE42589_series_matrix.txt", header =TRUE,
                      comment.char = "!", row.names=1)

可以从这个角度理解这三种方法: 最开始得到的都是CEL文件,CEL文件需要一系列的步骤才能转换成表达矩阵,例如去除批次效应、质控和过滤等,得到的表达矩阵在上传时会增加元数据信息(处理方法、分组信息),就成为我们下载的GSEXXXX_series_matrix.txt.gz. 通过手工解析加R语言简单操作得到了R语言中的数据框(data.frame), 而GEOquery能够帮助我们完成下载和解析这两个步骤。

三者的优先级为:GEOquery > 手工下载表达量矩阵文件 > 手工下载原始的CEL文件。

使用limma进行差异表达分析

limma的核心函数是lmFit和eBayes, 前者是用于线性拟合,后者根据前者的拟合结果进行统计推断。

lmFit至少需要两个输入,一个是表达矩阵,一个是分组对象。

表达矩阵必须是matrix类数据结构,每一列都是存放一个样本,每一行是一个探针信息或者是注释后的基因名。这里就是向我提问的人出错的原因,他在读入数据时,read.table少了参数,row.names= 1,导致第一列是探针信息。

# 使用GEOquery
exprSet <- exprs(gset[[1]])
# 基于matrix
expr.df <- read.table(file = "GSE42589_series_matrix.txt", header =TRUE,
                      comment.char = "!", row.names=1)
# 从cel文件开始
exprSet <- exprs(eset.rma)

试验设计矩阵: 没有试验设计矩阵对象,limma就不知道如何比较。分组数据可以手工从之前的matrix.gz整理,整理到一个excel,然后用R读取,或者就是直接从Geoquery的结果中解析。

pData <- pData(gset[[1]])
view(pData)
GEOquery解析的信息

其中title部分告诉了我们分组信息,2小时和18小时,每个时间段又有vehicle control, PE1.3 embolized, PE2.0 embolized,也就是2x2的双因素试验设计, 我们可以现在R语言里构建实验设计的数据框。

sample <- pData$geo_accession
treat_time <- rep(c("2h","18h"),each=11)
treat_type <- rep(rep(c("vehicle_control","PE1.3_embolized","PE2.0_embolized"), c(3,4,4)),
                  times=2)
design_df <- data.frame(sample, treat_time, treat_type)

根据Limma的使用手册的"9.5 Interaction Models: 2 X 2 Factorial Design"进行手续的分析。这里仅仅展示单个因素的分析过程,多个因素看文档依葫芦画瓢就行。

构建单因素试验设计矩阵,进行线性拟合

TS <- paste(design_df$treat_time, design_df$treat_type, sep=".")
TS
TS <- factor(TS, levels = unique(TS))
design <- model.matrix(~0+TS)
fit <- lmFit(exprSet, design)

然后根据我们要回答的问题,来设置比较对象。比如不同时间段下控制组哪些基因发生了差异报答,处理18小时后,处理组相对于对照组有哪些基因发生差异表达,也就是做多次t检验。

cont.matrix <- makeContrasts(
  vs1  = TS18.vehicle_control-TS2.vehicle_control, # 对照组在前后的差异表达基因
  vs2  = TS18.PE2.0_embolized-TS2.PE2.0_embolized, # PE2.0处理前后的差异基因
  vs3  = TS18.PE1.3_embolized-TS2.PE1.3_embolized, # PE1.3在处理前后差异基因
  # 处理18小时候,PE2.0相对于对照变化的基因再与PE1.3与对照的差异比较
  diff = (TS18.PE2.0_embolized-TS18.vehicle_control)-(TS18.PE1.3_embolized-TS18.vehicle_control),
  levels = design
)

fit2 <- contrasts.fit(fit, cont.matrix)
results <- decideTests(fit2)

最后的结果可以用韦恩图展示vennDiagram(results)

更多分析

找到的差异表达基因后续还可以做GO/KEGG富集分析,不是本文重点。


本文还可在http://xuzhougeng.top/阅读

版权声明:本博客所有文章除特别声明外,均采用 知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议 (CC BY-NC-ND 4.0) 进行许可。

扫码即刻交流
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容