pytorch常用normalization函数

pytorch常用normalization函数

将输入的图像shape记为[N, C, H, W],这几个方法主要的区别就是在,
batchNorm是在batch上,对NHW做归一化,对小batchsize效果不好;
layerNorm在通道方向上,对CHW归一化,主要对RNN作用明显;
instanceNorm在图像像素上,对HW做归一化,用在风格化迁移;
GroupNorm将channel分组,然后再做归一化;
SwitchableNorm是将BN、LN、IN结合,赋予权重,让网络自己去学习归一化层应该使用什么方法。

归一化与反归一化
https://blog.csdn.net/rehe_nofish/article/details/111413690

pytorch优雅的反归一化
https://blog.csdn.net/square_zou/article/details/99314197?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-1.control

重点关注

pytorch标准化后的图像数据如果反标准化保存

# coding:utf-8
import os
import torch.nn as nn
import numpy as np
import scipy.misc
import imageio
import matplotlib.pyplot as plt
import torch

def tensor2im(input_image, imtype=np.uint8):
    """"将tensor的数据类型转成numpy类型,并反归一化.

    Parameters:
        input_image (tensor) --  输入的图像tensor数组
        imtype (type)        --  转换后的numpy的数据类型
    """
    mean = [0.485,0.456,0.406] #dataLoader中设置的mean参数
    std = [0.229,0.224,0.225]  #dataLoader中设置的std参数
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor): #如果传入的图片类型为torch.Tensor,则读取其数据进行下面的处理
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor.cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        for i in range(len(mean)): #反标准化
            image_numpy[i] = image_numpy[i] * std[i] + mean[i]
        image_numpy = image_numpy * 255 #反ToTensor(),从[0,1]转为[0,255]
        image_numpy = np.transpose(image_numpy, (1, 2, 0))  # 从(channels, height, width)变为(height, width, channels)
    else:  # 如果传入的是numpy数组,则不做处理
        image_numpy = input_image
    return image_numpy.astype(imtype)

def save_img(im, path, size):
    """im可是没经过任何处理的tensor类型的数据,将数据存储到path中

    Parameters:
        im (tensor) --  输入的图像tensor数组
        path (str)  --  图像寻出的路径
        size (list/tuple)  --  图像合并的高宽(heigth, width)
    """
    scipy.misc.imsave(path, merge(im, size)) #将合并后的图保存到相应path中


def merge(images, size):
    """
    将batch size张图像合成一张大图,一行有size张图
    :param images: 输入的图像tensor数组,shape = (batch_size, channels, height, width)
    :param size: 合并的高宽(heigth, width)
    :return: 合并后的图
    """
    h, w = images[0].shape[1], images[0].shape[1]
    if (images[0].shape[0] in (3,4)): # 彩色图像
        c = images[0].shape[0]
        img = np.zeros((h * size[0], w * size[1], c))
        for idx, image in enumerate(images):
            i = idx % size[1]
            j = idx // size[1]
            image = tensor2im(image)
            img[j * h:j * h + h, i * w:i * w + w, :] = image
        return img
    elif images.shape[3]==1: # 灰度图像
        img = np.zeros((h * size[0], w * size[1]))
        for idx, image in enumerate(images):
            i = idx % size[1]
            j = idx // size[1]
            image = tensor2im(image)
            img[j * h:j * h + h, i * w:i * w + w] = image[:,:,0]
        return img
    else:
        raise ValueError('in merge(images,size) images parameter ''must have dimensions: HxW or HxWx3 or HxWx4')

图片保存:torchvision.utils.save_image(img, imgPath)
https://blog.csdn.net/weixin_43723625/article/details/108159190

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容