1.计算亲缘关系矩阵
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-a mouse_hs1940.anno.txt \
-gk 2 \
-o mouse_hs1940
# plink格式文件
gemma \
-bfile mouse_hs1940 \
-gk 2 \
-o mouse_hs1940test
# The estimated relatedness matrix should look like this:
0.3350590 -0.0227226 0.0103535 ...
-0.0227226 0.3035960 -0.0253762 ...
0.0103535 -0.0253762 0.3536100 ...
....................................
2.单性状LMM GWAS分析
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 1 \
-a mouse_hs1940.anno.txt \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1 \
-o mouse_hs1940_CD8_lmm
# plink格式文件
gemma \
-bfile mouse_hs1940 \
-n 1 \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1 \
-o mouse_hs1940_CD8_lmm
# The result for top 5 SNPs should look like this:
# chr rs ps n_miss allele1 allele0 af beta se l_remle p_wald
# 1 rs3683945 3197400 0 A G 0.443 -7.788665e-02 6.193502e-02 4.317993e+00 2.087616e-01
# 1 rs3707673 3407393 0 G A 0.443 -6.654282e-02 6.210234e-02 4.316144e+00 2.841271e-01
# 1 rs6269442 3492195 0 A G 0.365 -5.344241e-02 5.377464e-02 4.323611e+00 3.204804e-01
# 1 rs6336442 3580634 0 A G 0.443 -6.770154e-02 6.209267e-02 4.315713e+00 2.757541e-01
# 1 rs13475700 4098402 0 A C 0.127 -5.659089e-02 7.175374e-02 4.340145e+00 4.304306e-01
# The log file also contains pve estimates and its standard error
# pve estimate in the null model = 0.608801
# se(pve) in the null model = 0.032774
3.多性状LMM GWAS分析
## To perform association tests with a multivariate linear mixed model, for two phenotypes CD8 (column 1) and MCH (column 6):
## Notice that the number of individuals in this analysis is different from that above, so the allele frequencies are different between the two analyses
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 1 6 \
-a mouse_hs1940.anno.txt \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1\
-o mouse_hs1940_CD8MCH_lmm
# plink格式文件
gemma \
-bfile mouse_hs1940 \
-n 1 6 \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1\
-o mouse_hs1940_CD8MCH_lmm
# The result for top 5 SNPs should look like this:
# chr rs ps n_miss allele1 allele0 af beta_1 beta_2 Vbeta_1_1 Vbeta_1_2 Vbeta_2_2 p_wald
# 1 rs3683945 3197400 0 A G 0.451 -9.611213e-02 8.165302e-02 3.966873e-03 -2.526118e-04 5.540032e-03 1.862363e-01
# 1 rs3707673 3407393 0 G A 0.451 -8.464470e-02 7.130876e-02 3.986286e-03 -2.593467e-04 5.571616e-03 2.757067e-01
# 1 rs6269442 3492195 0 A G 0.377 -7.146771e-02 5.179252e-02 3.157023e-03 -7.187157e-05 4.276041e-03 3.317712e-01
# 1 rs6336442 3580634 0 A G 0.451 -8.502513e-02 6.813728e-02 3.985054e-03 -2.577585e-04 5.568602e-03 2.835426e-01
# 1 rs13475700 4098402 0 A C 0.128 -6.727883e-02 1.685363e-01 5.597160e-03 -1.366799e-04 7.574216e-03 1.060482e-01
# The log file also contains Vg and Ve estimates and their standard errors
## REMLE estimate for Vg (遗传方差)in the null model:
# 1.39398
# -0.226714 2.08168
## se(Vg):标准误
# 0.156661
# 0.136319 0.235858
## REMLE estimate for Ve (误差方差)in the null model:
# 0.348882
# 0.0490525 0.414433
## se(Ve):标准误
# 0.0206226
# 0.0166233 0.0266869
4.先填充缺失表型,再做LMM GWAS分析
# Since there are individuals with partially missing phenotypes, one can impute these missing values before association tests
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 1 6 \
-a mouse_hs1940.anno.txt \
-k ./output/mouse_hs1940.cXX.txt \
-predict \
-o mouse_hs1940_CD8MCH_prdt
gemma \
-g mouse_hs1940.geno.txt.gz \
-p ./output/mouse_hs1940_CD8MCH_prdt.prdt.txt \
-n 1 2 \
-a mouse_hs1940.anno.txt \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1\
-o mouse_hs1940_CD8MCH_prdt_lmm
###############################################
# plink格式文件
gemma \
-bfile mouse_hs1940 \
-n 1 6 \
-k ./output/mouse_hs1940.cXX.txt \
-predict \
-o mouse_hs1940_CD8MCH_prdt
gemma \
-bfile mouse_hs1940 \
-n 1 2 \
-k ./output/mouse_hs1940.cXX.txt \
-lmm 1\
-o mouse_hs1940_CD8MCH_prdt_lmm
5.贝叶斯稀疏线性混合模型
## To fit BSLMM in the training set:
## To fit a quantitative trait(数量性状)
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 2 \
-a mouse_hs1940.anno.txt \
-bslmm \
-o mouse_hs1940_CD8_bslmm \
-w 1000 \
-s 10000 \
-seed 1
# plink格式文件
gemma \
-bfile mouse_hs1940 \
-n 2 \
-bslmm \
-o mouse_hs1940_CD8_bslmm \
-w 1000 \
-s 10000 \
-seed 1
# the following three files may be of most importance:
# the *.hyp.txt contains a column for pve and pge
# the *.param.txt contains estimates for betas, gammas and alphas
# the *.bv.txt contains breeding value estimates
## To fit a binary trait(质量性状) using a linear model
# BIMBAM格式文件
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 4 \
-a mouse_hs1940.anno.txt \
-bslmm \
-o mouse_hs1940_CD8_bslmm_cc1 \
-w 1000 \
-s 10000
-seed 1
## To fit a binary trait using a probit model instead
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 4 \
-a mouse_hs1940.anno.txt \
-bslmm 3 \
-o mouse_hs1940_CD8_bslmm_cc3 \
-w 1000 \
-s 10000 \
-seed 1
# The pve estimates in the log file are based on the standard linear model (i.e. on the observed scale), and so you will need to properly transform it back to the liability scale
# To generate relatedness matrix based on the training data.
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 2 \
-a mouse_hs1940.anno.txt \
-gk 1 \
-o mouse_hs1940_CD8_train
# This matrix will only be required if you want to do prediction based on estimated breeding values
# Prediction can also be done without using the breeding values but instead using the alphas.
# This later approach does not appear to lose much accuracy in many examples we have encountered,
# although this may not be the case in your data.
## To obtain predicted values for the test set using estimates from BSLMM
## To do prediction in the test set for quantitative traits
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 2 \
-epm ./output/mouse_hs1940_CD8_bslmm.param.txt \
-emu ./output/mouse_hs1940_CD8_bslmm.log.txt \
-ebv ./output/mouse_hs1940_CD8_bslmm.bv.txt \
-k ./output/mouse_hs1940_CD8_train.cXX.txt \
-predict \
-o mouse_hs1940_CD8_prdt_k
## or use the alphas instead of breeding values
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 2 \
-epm ./output/mouse_hs1940_CD8_bslmm.param.txt \
-emu ./output/mouse_hs1940_CD8_bslmm.log.txt \
-predict \
-o mouse_hs1940_CD8_prdt
# The results will be inside ./output/*.prdt.txt
# If you load both results in R and check the mean squared error or correlation, you will find that both ways give very similar results. Both the correlation and the mean squared error should be around 0.65
## Now, do prediction in the test set for the binary traits
## If the traits were fitted using the linear model, then:
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 4 \
-epm ./output/mouse_hs1940_CD8_bslmm_cc1.param.txt \
-emu ./output/mouse_hs1940_CD8_bslmm_cc1.log.txt \
-predict \
-o mouse_hs1940_CD8_prdt_cc1
## If the traits were fitted using the probit model, then use predict option 2:
gemma \
-g mouse_hs1940.geno.txt.gz \
-p mouse_hs1940.pheno.txt \
-n 4 \
-epm ./output/mouse_hs1940_CD8_bslmm_cc3.param.txt \
-emu ./output/mouse_hs1940_CD8_bslmm_cc3.log.txt \
-predict 2 \
-o mouse_hs1940_CD8_prdt_cc3
# You will find that fitting the binary traits using either the linear version or the probit version of BSLMM gives similar results. The brier scores should be
# around 0.19 and the area under the curve (AUC) should be around 0.78.