数据挖掘ch1

What is Big Data?
“Big data is high-volume, high-velocity and high-variety information assets that demand cost-effective, innovative forms of information processing for enhanced insight and decision making.” — Gartner

“Big data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze.” — Mckinsey & Company

Paste_Image.png

Data mining
People have been analysing and investigating data for centuries.

Statistics
Mean, Variance, Correlation, Distribution …

In modern days, data are often far beyond human comprehension.
Diversity, Volume, Dimensionality

Definition
Data Mining is the process of automatically extracting interesting and useful hidden patterns from usually massive, incomplete and noisy data.

Not a fully automatic process
Human interventions are often inevitable.
Domain Knowledge
Data Collection and Pre-processing

Synonym: Knowledge Discovery

Paste_Image.png

Data Integration & Analysis

Paste_Image.png

Process of Data Mining

Paste_Image.png

DM Techniques - Classification
“Classification is a procedure in which individual items are placed into groups based on quantitative information on one or more characteristics (referred to as variables) and based on a training set of previously labeled items.”

Given a training set: {(x1, y1), …, (xn, yn)}, produce a classifier (function) that maps any unknown object xi to its class label yi.

Algorithms
Decision Trees
K-Nearest Neighbours
Neural Networks
Support Vector Machines

Applications
Churn Prediction
Medical Diagnosis
Classification Boundaries

Paste_Image.png

Overfitting – Classification

Paste_Image.png

Confusion Matrix

Paste_Image.png

TPR=TP/(TP+FN)

TNR=TN/(TN+FP)

Accuracy=(TP+TN)/(P+N)

Receiver Operating Characteristic


Paste_Image.png

DM Techniques - Clustering
“Clustering is the assignment of a set of observations into subsets (called clusters) so that observations in the same cluster are similar in some sense.”

Distance Metrics
Euclidean Distance
Manhattan Distance
Mahalanobis Distance

Algorithms
K-Means
Sequential Leader
Affinity Propagation

Applications
Market Research
Image Segmentation
Social Network Analysis

Paste_Image.png

Hierarchical Clustering

Paste_Image.png

DM Techniques – Association Rule

Paste_Image.png
Paste_Image.png

DM Techniques – Regression

Paste_Image.png
Paste_Image.png
Paste_Image.png

Overfitting – Regression

Paste_Image.png

Data Preprocessing
Real data are often surprisingly dirty.
A Major Challenge for Data Mining

Typical Issues
Missing Attribute Values
Different Coding/Naming Schemes
Infeasible Values
Inconsistent Data
Outliers

Data Quality
Accuracy
Completeness
Consistency
Interpretability
Credibility
Timeliness

Paste_Image.png

Data Cleaning
Fill in missing values.
Correct inconsistent data.
Identify outliers and noisy data.

Data Integration
Combine data from different sources.

Data Transformation
Normalization
Aggregation
Type Conversion

Data Reduction
Feature Selection
Sampling

Privacy Protection
Data: A Double-Edged Sword
People can benefit greatly from data analysis.
The consequence of information leakage can be catastrophic.

People may be reluctant to give sensitive information due to privacy concerns.
Drug, Tax, Sexuality …

How to find out the percentage of people with a certain attribute?
The interviewer should not know the true answer of each respondent.

Randomized Response
Used in structured survey research.
Can maintain the confidentiality of respondents.
Two questions are presented:
Q1: I have the attribute A.
Q2: I do not have the attribute A.

The respondent uses a random device to:
Answer Q1 with probability p.
Answer Q2 with probability 1-p.
The interviewer has no idea about which question is answered.

Paste_Image.png

Cloud Computing

Paste_Image.png
Paste_Image.png

Why bother so many different algorithms?

No algorithm is always superior to others.

No parameter setting is optimal over all problems.

Look for the best match between problem and algorithm.
Experience
Trial and Error

Factors to consider:
Applicability
Computational Complexity
Interpretability

Always start with simple ones.

Grouping

Paste_Image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • 这篇只是笔记而已,用于记录python编程中那些比较好的做法. python中经常使用的序列化模块是pickle,...
    Yihulee阅读 86评论 0 0
  • 《头上长出樱桃树》 金子最喜欢吃樱桃,每到春天樱桃上市,妈妈总会给她买很多樱桃。妈妈还告诉金子,樱桃籽不能吞进...
    春迟秋暮阅读 1,289评论 8 6
  • 时间过得真快,转眼间2016年就要结束,回想着走过的路,感触颇多。 记得年初的时候,给自己制定了年度目标,而如今2...
    陈慕读历史阅读 367评论 0 0