单例模式(Singleton)及其C++实现

单例模式(Singleton)及其C++实现

众多设计模式中,单例模式比较常见的一种,面试和工作中也会经常接触到。本文以一个C++开发者的角度来探讨单例模式几种典型实现。设计模式经典GoF定义的单例模式需要满足以下两个条件:

  1. 保证一个类只创建一个实例。
  2. 提供对该实例的全局访问点。

如果系统有类似的实体(有且只有一个,且需要全局访问),那么就可以将其实现为一个单例。实际工作中常见的应用举例

  • 日志类,一个应用往往只对应一个日志实例。
  • 配置类,应用的配置集中管理,并提供全局访问。
  • 管理器,比如windows系统的任务管理器就是一个例子,总是只有一个管理器的实例。
  • 共享资源类,加载资源需要较长时间,使用单例可以避免重复加载资源,并被多个地方共享访问。

Lazy Singleton

首先看GoF在描述单例模式时提出的一种实现,教科书式的例子,对C++有些经验应该对该实现都有些印象

//头文件中class Singleton  {    public:        static Singleton& Instance()        {            if (instance_ == NULL)            {                instance_ = new Singleton;            }            return *instance_;         }    private:        Singleton();        ~Singleton();        Singleton(const Singleton&);        Singleton& operator=(const Singleton&);    private:        static Singleton* instance_;};//实现文件中Singleton* Singleton::instance_ = 0;  

实现中构造函数被声明为私有方法,这样从根本上杜绝外部使用构造函数生成新的实例,同时禁用拷贝函数与赋值操作符(声明为私有但是不提供实现)避免通过拷贝函数或赋值操作生成新实例。

提供静态方法Instance()作为实例全局访问点,该方法中先判断有没有现成的实例,如果有直接返回,如果没有则生成新实例并把实例的指针保存到私有的静态属性中。

注意,这里Instance()返回的实例的引用而不是指针,如果返回的是指针可能会有被外部调用者delete掉的隐患,所以这里返回引用会更加保险一些。并且直到Instance()被访问,才会生成实例,这种特性被称为延迟初始化(Lazy initialization),这在一些初始化时消耗较大的情况有很大优势。

Lazy Singleton不是线程安全的,比如现在有线程A和线程B,都通过instance_ == NULL的判断,那么线程A和B都会创建新实例。单例模式保证生成唯一实例的规则被打破了。

Eager Singleton

这种实现在程序开始(静态属性instance初始化)的时就完成了实例的创建。这正好和上述的Lazy Singleton相反。

//头文件中class Singleton  {    public:        static Singleton& Instance()        {            return instance;        }    private:        Singleton();        ~Singleton();        Singleton(const Singleton&);        Singleton& operator=(const Singleton&);    private:        static Singleton instance;}//实现文件中Singleton Singleton::instance;  

由于在main函数之前初始化,所以没有线程安全的问题,但是潜在问题在于no-local static对象(函数外的static对象)在不同编译单元(可理解为cpp文件和其包含的头文件)中的初始化顺序是未定义的。如果在初始化完成之前调用 Instance()方法会返回一个未定义的实例。

Meyers Singleton

Scott Meyers在《Effective C++》(Item 04)中的提出另一种更优雅的单例模式实现,使用local static对象(函数内的static对象)。当第一次访问Instance()方法时才创建实例。

class Singleton  {    public:        static Singleton& Instance()    {        static Singleton instance;        return instance;    }    private:        Singleton();        ~Singleton();        Singleton(const Singleton&);        Singleton& operator=(const Singleton&);};

C++0x之后是该实现线程安全的,有兴趣可以读相关的标准草案(section 6.7)编译器支持程度不一定,但是G++4.0及以上是支持的。

双检测锁模式(Double-Checked Locking Pattern)

Lazy Singleton的一种线程安全改造是在Instance()中每次判断是否为NULL前加锁,但是加锁是很慢的。
而实际上只有第一次实例创建的时候才需要加锁。双检测锁模式被提出来,改造之后大致是这样

static Singleton& Instance()  {    if (instance_ == NULL)     {        Lock lock; //基于作用域的加锁,超出作用域,自动调用析构函数解锁        if (instance_ == NULL)        {              instance_ = new Singleton;        }    }    return *instance_;}

既然只需要在第一次初始化的时候加锁,那么在这之前判断一下实例有没有被创建就可以了,所以多在加锁之前多加一层判断,需要判断两次所有叫Double-Checked。理论上问题解决了,但是在实践中有很多坑,如指令重排、多核处理器等问题让DCLP实现起来比较复杂比如需要使用内存屏障,详细的分析可以阅读这篇论文

在C++11中有全新的内存模型和原子库,可以很方便的用来实现DCLP。这里不展开。有兴趣可以阅读这篇文章《Double-Checked Locking is Fixed In C++11》。

pthread_once

在多线程编程环境下,尽管pthread_once()调用会出现在多个线程中,init_routine()函数仅执行一次,pthread_once是很适合用来实现线程安全单例。

template<typename T>  class Singleton : boost::noncopyable  {    public:        static T& instance()        {            pthread_once(&ponce_, &Singleton::init);            return *value_;        }         static void init()        {            value_ = new T();        }    private:        static pthread_once_t ponce_;       static T* value_;};template<typename T>  pthread_once_t Singleton<T>::ponce_ = PTHREAD_ONCE_INIT; template<typename T>  T* Singleton<T>::value_ = NULL;  

这里的boost::noncopyable的作用是把构造函数, 赋值函数, 析构函数, 复制构造函数声明为私有或者保护。

总结

单例模式的实现方法很多,要写一个完美的实现很难代码也会很复杂。但是掌握基础的实现还是很必要的,然后在实际应用中不断地去优化和探索。除了线程安全,一些场景下还有需要考虑资源释放,生命周期等相关问题,可以参见《Modern C++ Design》中对Singleton的讨论。

</article>

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342