Hadoop 3.0新特性预览

1. Hadoop 3.0简介

Hadoop 2.0是基于JDK 1.7开发的,而JDK 1.7在2015年4月已停止更新,这直接迫使Hadoop社区基于JDK 1.8重新发布一个新的Hadoop版本,而这正是hadoop 3.0。

Hadoop 3.0的alpha版预计今年夏天发布,GA版本11月或12月发布。

Hadoop 3.0中引入了一些重要的功能和优化,包括HDFS可擦除编码、多Namenode支持、MR Native Task优化、YARN基于cgroup的内存和磁盘IO隔离、YARN container resizing等。


2. Hadoop 3.0新特性


Hadoop 3.0在功能和性能方面,对hadoop内核进行了多项重大改进,主要包括:

2.1 Hadoop Common

(1)精简Hadoop内核,包括剔除过期的API和实现,将默认组件实现替换成最高效的实现(比如将FileOutputCommitter缺省实现换为v2版本,废除hftp转由webhdfs替代,移除Hadoop子实现序列化库org.apache.hadoop.Records

(2)Classpath isolation以防止不同版本jar包冲突,比如google Guava在混合使用Hadoop、HBase和Spark时,很容易产生冲突。(https://issues.apache.org/jira/browse/HADOOP-11656)

(3)Shell脚本重构。Hadoop 3.0对Hadoop的管理脚本进行了重构,修复了大量bug,增加了新特性,支持动态命令等。https://issues.apache.org/jira/browse/HADOOP-9902


2.2 Hadoop HDFS


(1)HDFS支持数据的擦除编码,这使得HDFS在不降低可靠性的前提下,节省一半存储空间。(https://issues.apache.org/jira/browse/HDFS-7285)

(2)多NameNode支持,即支持一个集群中,一个active、多个standby namenode部署方式。注:多ResourceManager特性在hadoop 2.0中已经支持。(https://issues.apache.org/jira/browse/HDFS-6440)


2.3 Hadoop MapReduce


(1)Tasknative优化。为MapReduce增加了C/C++的map output collector实现(包括Spill,Sort和IFile等),通过作业级别参数调整就可切换到该实现上。对于shuffle密集型应用,其性能可提高约30%。(https://issues.apache.org/jira/browse/MAPREDUCE-2841)

(2)MapReduce内存参数自动推断。在Hadoop 2.0中,为MapReduce作业设置内存参数非常繁琐,涉及到两个参数:mapreduce.{map,reduce}.memory.mb和mapreduce.{map,reduce}.java.opts,一旦设置不合理,则会使得内存资源浪费严重,比如将前者设置为4096MB,但后者却是“-Xmx2g”,则剩余2g实际上无法让java heap使用到。(https://issues.apache.org/jira/browse/MAPREDUCE-5785)


2.4 Hadoop YARN

(1)基于cgroup的内存隔离和IO Disk隔离(https://issues.apache.org/jira/browse/YARN-2619)

(2)用curator实现RM leader选举(https://issues.apache.org/jira/browse/YARN-4438)

(3)containerresizing(https://issues.apache.org/jira/browse/YARN-1197)

(4)Timelineserver next generation(https://issues.apache.org/jira/browse/YARN-2928)


3.   Hadoop3.0总结

Hadoop 3.0的alpha版预计今年夏天发布,GA版本11月或12月发布。

Hadoop 3.0中引入了一些重要的功能和优化,包括HDFS 可擦除编码、多Namenode支持、MR Native Task优化、YARN基于cgroup的内存和磁盘IO隔离、YARN container resizing等。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容