数据结构之二叉排序树

二叉排序数

1.二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

1561108535519.png

代码实现:

package cn.smallmartial.binarySortTree;

/**
 * @Author smallmartial
 * @Date 2019/6/21
 * @Email smallmarital@qq.com
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7,3,10,12,5,1,9};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        System.out.println("中序遍历二叉树");
        binarySortTree.infixOrder();
    }
}
//创建二叉排序树
class BinarySortTree{
    private Node root;
    //添加节点的方法
    public void add(Node node){
        if (root == null){
            root = node;
        }else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node{

    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加节点方法
    public void add(Node node){
        if (node == null){
            return;
        }

        //判断传入结点的值,和当前子树的根节点的关系
        if (node.value < this.value){
            //如果当前左子节点为null
            if (this.left == null){
                this.left = node;
            }else {
                this.left.add(node);
            }
        }else {
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }

        System.out.println(this);

        if (this.right !=null){
            this.right.infixOrder();
        }

    }

}

2.二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

1)删除叶子节点 (比如:2, 5, 9, 12)

2)删除只有一颗子树的节点 (比如:1)

3)删除有两颗子树的节点. (比如:7, 3,10 )

2.1思路分析

  • 第一种情况:
    删除叶子节点 (比如:2, 5, 9, 12)
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 确定 targetNode 是 parent的左子结点 还是右子结点
    (4) 根据前面的情况来对应删除
    左子结点 parent.left = null
    右子结点 parent.right = null;

  • 第二种情况: 删除只有一颗子树的节点 比如 1
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 确定targetNode 的子结点是左子结点还是右子结点
    (4) targetNode 是 parent 的左子结点还是右子结点
    (5) 如果targetNode 有左子结点

    5.1 如果 targetNode 是 parent 的左子结点
    parent.left = targetNode.left;
    5.2 如果 targetNode 是 parent 的右子结点
    parent.right = targetNode.left;
    (6) 如果targetNode 有右子结点
    6.1 如果 targetNode 是 parent 的左子结点
    parent.left = targetNode.right;
    6.2 如果 targetNode 是 parent 的右子结点
    parent.right = targetNode.right

  • 情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )
    思路
    (1) 需求先去找到要删除的结点 targetNode
    (2) 找到targetNode 的 父结点 parent
    (3) 从targetNode 的右子树找到最小的结点
    (4) 用一个临时变量,将 最小结点的值保存 temp = 11
    (5) 删除该最小结点
    (6) targetNode.value = temp

2.2代码实现

package cn.smallmartial.binarySortTree;

/**
 * @Author smallmartial
 * @Date 2019/6/21
 * @Email smallmarital@qq.com
 */
public class BinarySortTreeDemo {
    public static void main(String[] args) {
        int[] arr = {7,3,10,12,5,1,9,2};
        BinarySortTree binarySortTree = new BinarySortTree();
        for (int i = 0; i < arr.length; i++) {
            binarySortTree.add(new Node(arr[i]));
        }
        System.out.println("中序遍历二叉树");
        binarySortTree.infixOrder();

       // binarySortTree.delNode(2);
        //binarySortTree.delNode(5);
      //  binarySortTree.delNode(1);
        binarySortTree.delNode(7);

        System.out.println("删除键节点后");
        binarySortTree.infixOrder();
    }
}
//创建二叉排序树
class BinarySortTree{
    private Node root;

    //查找要删除的节点
    public Node search(int value){
        if (root == null){
            return null;
        }else {
            return root.search(value);
        }
    }

    //查找父节点
    public Node searchParent(int value){
        if (root == null){
            return null;
        }else {
            return root.searchParent(value);
        }
    }

    /**
     *
     * @param node 传入节点 作为二叉排序树的根节点
     * @return
     */
    public int delRightTreeMin(Node node){
        Node target = node;
        while (target.left != null){
            target = target.left;
        }
        //删除最小节点
        delNode(target.value);
        return target.value;
    }

    //删除节点
    public void delNode(int value){
        if (root == null){
            return;
        }else {
            Node targetNode = search(value);
            if (targetNode == null){
                return;
            }

            if (root.left == null && root.right == null){
                root = null;
                return;
            }

            //去找到targetNode的父节点
            Node parent = searchParent(value);

            if (targetNode.left == null && targetNode.right == null){
                //判断targetNode是父节点的左子节点还是右子节点
                if (parent.left != null && parent.left.value == value){
                    parent.left  = null;
                }else if (parent.right != null && parent.right.value == value){
                    parent.right = null;
                }
            }else if (targetNode.left!= null && targetNode.right !=null){//删除有2颗子树的节点
                int minVal = delRightTreeMin(targetNode.right);
                targetNode.value = minVal;
            }else {//删除只有一颗子树的节点
            if (targetNode.left !=null){
                if (parent.left.value == value){
                    parent.left = targetNode.left;
                }else {
                    parent.right = targetNode.left;
                }
            }else {
                if (parent.left.value == value){
                    parent.left = targetNode.right;
                }else {
                    parent.right = targetNode.right;
                }
            }

            }
        }


    }

    //添加节点的方法
    public void add(Node node){
        if (root == null){
            root = node;
        }else {
            root.add(node);
        }
    }
    //中序遍历
    public void infixOrder(){
        if (root != null){
            root.infixOrder();
        }else {
            System.out.println("二叉树为空,不能遍历");
        }
    }
}

//创建Node结点
class Node{

    int value;
    Node left;
    Node right;

    public Node(int value) {
        this.value = value;
    }

    /**
     *查找删除的节点
     * @param value
     * @return
     */
    //查找删除节点
    public Node search(int value){
        if (value == this.value){
            return this;
        }else  if(value <this.value){//如果查找当前的值小于当前节点,向左递归查找
            //如果左子节点为空
            if (this.left == null){
                return null;
            }
            return this.left.search(value);
        }else {//如果查找当前的值不小于当前节点,向小递归查找
            if (this.right == null){
                return null;
            }
            return this.right.search(value);

        }
    }
    //查找要删除节点的父节点
    public Node searchParent(int value){
        if (this.left != null && this.left.value == value ||(this.right != null && this.right.value == value)){
            return this;
        }else {
            //如果查找的值小于当前结点的值,并且当前节点的左子节点不为空
            if (value < this.value && this.left != null){
                return this.left.searchParent(value);
            }else if (value >= this.value && this.right != null){
                return this.right.searchParent(value);
            }else {
                return null;
            }
        }
    }

    @Override
    public String toString() {
        return "Node{" +
                "value=" + value +
                '}';
    }

    //添加节点方法
    public void add(Node node){
        if (node == null){
            return;
        }

        //判断传入结点的值,和当前子树的根节点的关系
        if (node.value < this.value){
            //如果当前左子节点为null
            if (this.left == null){
                this.left = node;
            }else {
                this.left.add(node);
            }
        }else {
            if (this.right == null){
                this.right = node;
            }else {
                this.right.add(node);
            }
        }
    }

    //中序遍历
    public void infixOrder(){
        if (this.left != null){
            this.left.infixOrder();
        }

        System.out.println(this);

        if (this.right !=null){
            this.right.infixOrder();
        }

    }

}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,491评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,856评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,745评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,196评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,073评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,112评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,531评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,215评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,485评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,578评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,356评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,215评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,583评论 3 299
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,898评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,497评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,697评论 2 335

推荐阅读更多精彩内容