SQL | 备忘录

常用函数

  • 计算字段长度:LENGTH()
  • 计算array长度:SIZE()

查询一个a对应多个b的情况

select
  a,
  collect_list(distinct(b)) as b
from
  table
group by
  a

查询出现次数最多的一些记录

SELECT keyword, count( * ) AS count
FROM article_keyword
GROUP BY keyword
ORDER BY count DESC
LIMIT 20

查询数据库里是否存在重复数据

SELECT count(*),column1,column2,...columnN 
FROM table1 
GROUP BY column1,column2,...columnN 
HAVING count(*) > 1

模糊查询

  • % :表示任意0个或多个字符。可匹配任意类型和长度的字符,有些情况下若是中文,请使用两个百分号(%%)表示。
    比如 SELECT * FROM [user] WHERE u_name LIKE '%三%'

  • _ : 表示任意单个字符。匹配单个任意字符,它常用来限制表达式的字符长度语句。
    比如 SELECT * FROM [user] WHERE u_name LIKE ''

  • [ ] :表示括号内所列字符中的一个(类似正则表达式)。指定一个字符、字符串或范围,要求所匹配对象为它们中的任一个。
    比如 SELECT * FROM [user] WHERE u_name LIKE '[张李王]三'

  • [^ ] :表示不在括号所列之内的单个字符。其取值和 [] 相同,但它要求所匹配对象为指定字符以外的任一个字符。
    比如 SELECT * FROM [user] WHERE u_name LIKE '[^张李王]三'

hive解析json数据

  • 普通json数据

str = {"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"}

select
get_json_object('str', '$.movie') as movie;
...

说明:解析json的字符串json_string,返回path指定的内容。如果输入的json字符串无效,那么返回NUll,这个函数每次只能返回一个数据项。

select b.b_movie,b.b_rate,b.b_timeStamp,b.b_uid 
from json a lateral view 
json_tuple(a.data,'movie','rate','timeStamp','uid') b as b_movie,b_rate,b_timeStamp,b_uid

参数为一组键和json字符串,返回值的元组。该方法比get_json_object高效,因此可以在一次调用中输入多次键。

  • json数组

使用Hive的内置的explode函数,explode()接收一个 array或者map 类型的数据作为输入,然后将 array 或 map 里面的元素按照每行的形式输出。其可以配合 LATERAL VIEW 一起使用。

SELECT
    subview.actor,
    get_json_object(subview.actor, '$.score') as score,
    get_json_object(subview.actor, '$.name') as name
FROM
    a lateral view explode(split(regexp_replace(regexp_replace(actor, '\\[|\\]',''), '\\}\\,\\{', '\\}\\-\\{'), '\\-')) subview as actor

lateral view为侧视图,把某一行数据拆分成多行数据,加上lateral view可以将拆分的单个字段数据与原始表数据关联上。
注意:在使用lateral view的时候需要指定视图别名和生成的新列别名

写入hive表分区

# 往表里加parquet内容
alter table xxx
add if not exists partition (p_date={{ ds_nodash }})
location '/xxx/yyy/p_date={{ ds_nodash }}'"

随机抽取

DISTRIBUTE BY rand(0) --随机打散到不同的节点
sort by rand(0) --每个节点内随机
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容