ydata_profiling:自动生成数据探索报告的Python库

之前在做数据分析的时候,用过一个自动化生成数据探索报告的Python库:ydata_profiling

一般我们在做数据处理前会进行数据探索,包括看统计分布、可视化图表、数据质量情况等,这个过程会消耗很多时间,可能需要上百行代码才能实现。

ydata_profiling能够直接完成数据探索的工作,只需要几行代码,它会生成互动网页形式的报告,里面包含数据概览、字段分布、统计学特征、相关性、缺失值、样本信息等。

# 导入库
from ydata_profiling import ProfileReport
import pandas as pd
# 读取数据
df = pd.read_csv('housing.csv')
# 自动生成数据探索报告
profile = ProfileReport(df, title="Profiling Report")
profile

以上代码在Jupyter notebook中执行,生成数据探索报告如下

ydata_profiling文档提了几个用途,我觉得还是比较实用的。

  • 提供数据概览:包括广泛的统计数据和可视化图表,提供数据的整体视图。该报告可以作为html文件共享,也可以作为小部件集成在Jupyter笔记本中。

  • 数据质量评估:识别缺失数据、重复数据和异常值。这些对于数据清理和准备很重要,确保分析的可靠性,并及早发现问题。

  • 易于与其他流集成:数据分析的所有度量都可以以标准JSON格式使用。

  • 大型数据集的数据探索:即使体量很大的数据集,ydata_profiling也可以轻松生成报告,它同时支持Pandas数据帧和Spark数据帧。

数据集概览 Overview

首先可以看到数据集的整体信息,包括字段数、缺失值行、重复行、占内存大小等等

字段详细信息 Variables

你可以看到所有字段的统计学特征以及分布情况,包括均值、分位值、最大最小值


字段分布关系 Interactions

这是个交互可视化图,可以选择任意两个字段,看他们的散点分布关系,通过这个你可以很直观的知道各个字段的关联关系是什么样的,正相关、负相关、无相关等

字段相关性 Correations

这里通过热力图展示每个字段的相关性,也可以看到具体的值


缺失值 Missing values

通过柱状图可以清晰看到每个字段缺失值情况

样本 Sample

可以展示前10、尾10的样本数据

如果你想加快数据分析的速度,可以好好把ydata_profiling利用起来,前期数据探索阶段可以省很多时间。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容