队列和广度优先搜索(BFS)、栈和深度优先搜索(DFS)及Java模板

本文为Leetcode学习笔记

队列和广度优先搜索(BFS)

广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径。在本文中,我们提供了一个示例来解释在 BFS 算法中是如何逐步应用队列的。

1. 结点的处理顺序是什么?

在第一轮中,我们处理根结点。在第二轮中,我们处理根结点旁边的结点;在第三轮中,我们处理距根结点两步的结点;等等等等。

与树的层序遍历类似,越是接近根结点的结点将越早地遍历。

如果在第 k 轮中将结点 X 添加到队列中,则根结点与 X 之间的最短路径的长度恰好是 k。也就是说,第一次找到目标结点时,你已经处于最短路径中。

2. 队列的入队和出队顺序是什么?

我们首先将根结点排入队列。然后在每一轮中,我们逐个处理已经在队列中的结点,并将所有邻居添加到队列中。值得注意的是,新添加的节点不会立即遍历,而是在下一轮中处理。

结点的处理顺序与它们添加到队列的顺序是完全相同的顺序,即先进先出(FIFO)。这就是我们在 BFS 中使用队列的原因。

在特定问题中执行 BFS 之前确定结点和边缘非常重要。通常,结点将是实际结点或是状态,而边缘将是实际边缘或可能的转换。

模板 I
/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                add next to queue;
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}
  1. 如代码所示,在每一轮中,队列中的结点是等待处理的结点。
  2. 在每个更外一层的 while 循环之后,我们距离根结点更远一步。变量 step 指示从根结点到我们正在访问的当前结点的距离。
模板II

有时,确保我们永远不会访问一个结点两次很重要。否则,我们可能陷入无限循环。如果是这样,我们可以在上面的代码中添加一个哈希集来解决这个问题。这是修改后的伪代码:

/**
 * Return the length of the shortest path between root and target node.
 */
int BFS(Node root, Node target) {
    Queue<Node> queue;  // store all nodes which are waiting to be processed
    Set<Node> used;     // store all the used nodes
    int step = 0;       // number of steps neeeded from root to current node
    // initialize
    add root to queue;
    add root to used;
    // BFS
    while (queue is not empty) {
        step = step + 1;
        // iterate the nodes which are already in the queue
        int size = queue.size();
        for (int i = 0; i < size; ++i) {
            Node cur = the first node in queue;
            return step if cur is target;
            for (Node next : the neighbors of cur) {
                if (next is not in used) {
                    add next to queue;
                    add next to used;
                }
            }
            remove the first node from queue;
        }
    }
    return -1;          // there is no path from root to target
}

有两种情况你不需要使用哈希集:

  1. 你完全确定没有循环,例如,在树遍历中;
  2. 你确实希望多次将结点添加到队列中。

栈和深度优先搜索(DFS)

与 BFS 类似,深度优先搜索(DFS)也可用于查找从根结点到目标结点的路径。在本文中,我们提供了示例来解释 DFS 是如何工作的以及栈是如何逐步帮助 DFS 工作的。

1. 结点的处理顺序是什么?

在上面的例子中,我们从根结点 A 开始。首先,我们选择结点 B 的路径,并进行回溯,直到我们到达结点 E,我们无法更进一步深入。然后我们回溯到 A 并选择第二条路径到结点 C 。从 C 开始,我们尝试第一条路径到 E 但是 E 已被访问过。所以我们回到 C 并尝试从另一条路径到 F。最后,我们找到了 G。

总的来说,在我们到达最深的结点之后,我们只会回溯并尝试另一条路径。

因此,你在 DFS 中找到的第一条路径并不总是最短的路径。例如,在上面的例子中,我们成功找出了路径 A-> C-> F-> G 并停止了 DFS。但这不是从 A 到 G 的最短路径。

2. 栈的入栈和退栈顺序是什么?

我们首先将根结点推入到栈中;然后我们尝试第一个邻居 B 并将结点 B 推入到栈中;等等等等。当我们到达最深的结点 E 时,我们需要回溯。当我们回溯时,我们将从栈中弹出最深的结点,这实际上是推入到栈中的最后一个结点。

结点的处理顺序是完全相反的顺序,就像它们被添加到栈中一样,它是后进先出(LIFO)。这就是我们在 DFS 中使用栈的原因。

正如我们在本章的描述中提到的,在大多数情况下,我们在能使用 BFS 时也可以使用 DFS。但是有一个重要的区别:遍历顺序

与 BFS 不同,更早访问的结点可能不是更靠近根结点的结点。因此,你在 DFS 中找到的第一条路径可能不是最短路径

模板 - 递归
/*
 * Return true if there is a path from cur to target.
 */
boolean DFS(Node cur, Node target, Set<Node> visited) {
    return true if cur is target;
    for (next : each neighbor of cur) {
        if (next is not in visited) {
            add next to visted;
            return true if DFS(next, target, visited) == true;
        }
    }
    return false;
}

当我们递归地实现 DFS 时,似乎不需要使用任何栈。但实际上,我们使用的是由系统提供的隐式栈,也称为调用栈。

示例

让我们看一个例子。我们希望在下图中找到结点 0 和结点 3 之间的路径。我们还会在每次调用期间显示栈的状态。

Stack Status

在每个堆栈元素中,都有一个整数 cur,一个整数 target,一个对访问过的数组的引用和一个对数组边界的引用,这些正是我们在 DFS 函数中的参数。我们只在上面的栈中显示 cur

每个元素都需要固定的空间。栈的大小正好是 DFS 的深度。因此,在最坏的情况下,维护系统栈需要 O(h),其中 h 是 DFS 的最大深度。在计算空间复杂度时,永远不要忘记考虑系统栈。

在上面的模板中,我们在找到第一条路径时停止。
如果你想找到最短路径呢?
提示:再添加一个参数来指示你已经找到的最短路径。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容

  • 数据结构与算法--图的搜索(深度优先和广度优先) 有时候我们需要系统地检查每一个顶点或者每一条边来获取图的各种性质...
    sunhaiyu阅读 2,604评论 0 5
  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,637评论 0 13
  • 这世间有爱情、亲情、友情,每个人都会拥有,也会用自己的亲身经历去诠释它们的滋味。然而,有一种情却与上述无...
    君子兰_fcb0阅读 349评论 2 3
  • 关于人工智能,它拥有强大的计算能力,无限的存储空间;上知天文下知地理无所不知,根据各种数据和数学模型预测未来;AI...
    gabz阅读 368评论 0 1
  • 这个世界上有很多故事,而平凡如我却不是圭多,幸好你成为了我的多拉。 我的情绪向来波动不平,想来只怕是因为每一个在爱...
    松果好吃么阅读 157评论 0 1