本文为Leetcode学习笔记
队列和广度优先搜索(BFS)
广度优先搜索(BFS)的一个常见应用是找出从根结点到目标结点的最短路径。在本文中,我们提供了一个示例来解释在 BFS 算法中是如何逐步应用队列的。
1. 结点的处理顺序是什么?
在第一轮中,我们处理根结点。在第二轮中,我们处理根结点旁边的结点;在第三轮中,我们处理距根结点两步的结点;等等等等。
与树的层序遍历类似,越是接近根结点的结点将越早地遍历。
如果在第 k 轮中将结点 X 添加到队列中,则根结点与 X 之间的最短路径的长度恰好是 k。也就是说,第一次找到目标结点时,你已经处于最短路径中。
2. 队列的入队和出队顺序是什么?
我们首先将根结点排入队列。然后在每一轮中,我们逐个处理已经在队列中的结点,并将所有邻居添加到队列中。值得注意的是,新添加的节点不会立即遍历,而是在下一轮中处理。
结点的处理顺序与它们添加到队列的顺序是完全相同的顺序,即先进先出(FIFO)。这就是我们在 BFS 中使用队列的原因。
在特定问题中执行 BFS 之前确定结点和边缘非常重要。通常,结点将是实际结点或是状态,而边缘将是实际边缘或可能的转换。
模板 I
/**
* Return the length of the shortest path between root and target node.
*/
int BFS(Node root, Node target) {
Queue<Node> queue; // store all nodes which are waiting to be processed
int step = 0; // number of steps neeeded from root to current node
// initialize
add root to queue;
// BFS
while (queue is not empty) {
step = step + 1;
// iterate the nodes which are already in the queue
int size = queue.size();
for (int i = 0; i < size; ++i) {
Node cur = the first node in queue;
return step if cur is target;
for (Node next : the neighbors of cur) {
add next to queue;
}
remove the first node from queue;
}
}
return -1; // there is no path from root to target
}
- 如代码所示,在每一轮中,队列中的结点是等待处理的结点。
- 在每个更外一层的 while 循环之后,我们距离根结点更远一步。变量 step 指示从根结点到我们正在访问的当前结点的距离。
模板II
有时,确保我们永远不会访问一个结点两次很重要。否则,我们可能陷入无限循环。如果是这样,我们可以在上面的代码中添加一个哈希集来解决这个问题。这是修改后的伪代码:
/**
* Return the length of the shortest path between root and target node.
*/
int BFS(Node root, Node target) {
Queue<Node> queue; // store all nodes which are waiting to be processed
Set<Node> used; // store all the used nodes
int step = 0; // number of steps neeeded from root to current node
// initialize
add root to queue;
add root to used;
// BFS
while (queue is not empty) {
step = step + 1;
// iterate the nodes which are already in the queue
int size = queue.size();
for (int i = 0; i < size; ++i) {
Node cur = the first node in queue;
return step if cur is target;
for (Node next : the neighbors of cur) {
if (next is not in used) {
add next to queue;
add next to used;
}
}
remove the first node from queue;
}
}
return -1; // there is no path from root to target
}
有两种情况你不需要使用哈希集:
- 你完全确定没有循环,例如,在树遍历中;
- 你确实希望多次将结点添加到队列中。
栈和深度优先搜索(DFS)
与 BFS 类似,深度优先搜索(DFS)也可用于查找从根结点到目标结点的路径。在本文中,我们提供了示例来解释 DFS 是如何工作的以及栈是如何逐步帮助 DFS 工作的。
图
1. 结点的处理顺序是什么?
在上面的例子中,我们从根结点 A 开始。首先,我们选择结点 B 的路径,并进行回溯,直到我们到达结点 E,我们无法更进一步深入。然后我们回溯到 A 并选择第二条路径到结点 C 。从 C 开始,我们尝试第一条路径到 E 但是 E 已被访问过。所以我们回到 C 并尝试从另一条路径到 F。最后,我们找到了 G。
总的来说,在我们到达最深的结点之后,我们只会回溯并尝试另一条路径。
因此,你在 DFS 中找到的第一条路径并不总是最短的路径。例如,在上面的例子中,我们成功找出了路径 A-> C-> F-> G 并停止了 DFS。但这不是从 A 到 G 的最短路径。
2. 栈的入栈和退栈顺序是什么?
我们首先将根结点推入到栈中;然后我们尝试第一个邻居 B 并将结点 B 推入到栈中;等等等等。当我们到达最深的结点 E 时,我们需要回溯。当我们回溯时,我们将从栈中弹出最深的结点,这实际上是推入到栈中的最后一个结点。
结点的处理顺序是完全相反的顺序,就像它们被添加到栈中一样,它是后进先出(LIFO)。这就是我们在 DFS 中使用栈的原因。
正如我们在本章的描述中提到的,在大多数情况下,我们在能使用 BFS 时也可以使用 DFS。但是有一个重要的区别:遍历顺序。
与 BFS 不同,更早访问的结点可能不是更靠近根结点的结点。因此,你在 DFS 中找到的第一条路径可能不是最短路径。
模板 - 递归
/*
* Return true if there is a path from cur to target.
*/
boolean DFS(Node cur, Node target, Set<Node> visited) {
return true if cur is target;
for (next : each neighbor of cur) {
if (next is not in visited) {
add next to visted;
return true if DFS(next, target, visited) == true;
}
}
return false;
}
当我们递归地实现 DFS 时,似乎不需要使用任何栈。但实际上,我们使用的是由系统提供的隐式栈,也称为调用栈。
示例
让我们看一个例子。我们希望在下图中找到结点 0 和结点 3 之间的路径。我们还会在每次调用期间显示栈的状态。
在每个堆栈元素中,都有一个整数 cur,一个整数 target,一个对访问过的数组的引用和一个对数组边界的引用,这些正是我们在 DFS 函数中的参数。我们只在上面的栈中显示 cur。
每个元素都需要固定的空间。栈的大小正好是 DFS 的深度。因此,在最坏的情况下,维护系统栈需要 O(h),其中 h 是 DFS 的最大深度。在计算空间复杂度时,永远不要忘记考虑系统栈。
在上面的模板中,我们在找到第一条路径时停止。
如果你想找到最短路径呢?
提示:再添加一个参数来指示你已经找到的最短路径。