TensorFlow实现简单的MNIST手写数字识别问题

1.单层神经网络
#从TensorFlow中导入MNIST数据集
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) 
#定义变量
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
#创建神经网格
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
#二次代价函数
loss = tf.reduce_mean(tf.square(y_ - y))
#梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#求准确率
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
    sess.run(init)
#对55000个训练数据进行21次训练
    for n in range(21):
        for i in range(550):
            batch_xs,batch_ys=mnist.train.next_batch(100)
            sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
            acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
        print("Iter " + str(n)+",Testing Accuracy "+str(acc))
  • 通过以上的代码可以在测试数据上平均达到92% 的准确率
2.增加一个隐藏层
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot=True) 
#每个批次的大小
batch_size = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples//batch_size
#定义几个placeholder
x = tf.placeholder(tf.float32,[None,784])
y_ = tf.placeholder(tf.float32,[None,10])
#keep_prob = tf.placeholder(tf.float32)
#创建一个含隐藏层的神经网络
w1 = tf.Variable(tf.truncated_normal([784,300],stddev=0.1))
w2 = tf.Variable(tf.zeros([300,10]))
b1 =tf.Variable(tf.zeros([300]))
b2 =tf.Variable(tf.zeros([10]))
L1=tf.nn.relu(tf.matmul(x,w1)+b1)
y =tf.nn.softmax(tf.matmul(L1,w2)+b2)
#二次代价函数
loss=tf.reduce_mean(tf.square(y_ - y))
#使用梯度下降法
train_step=tf.train.GradientDescentOptimizer(0.5).minimize(loss)
#初始化变量
init=tf.global_variables_initializer()
#结果存放在一个布尔型列表中
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#求准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict=({x:batch_xs,y_:batch_ys}))
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
        print("Iter " + str(epoch)+",Testing Accuracy "+str(acc))
  • 其它条件不变,只增加一个隐藏层,训练21次可以达到95%左右的准确率,训练200次可以达到接近98% 的准确率。
  • 事实上,现在的Softmax Regression加入隐含层变成一个正统的神经网络后,再结合Dropout、Adagrad、ReLU等技术准确率可以达到98%。引入卷积层、池化层后,也可以达到99%的正确率。而目前基于卷积神经网络的state-of-the-art的方法已经可以达到99.8%的正确率。
    引用:《TensorFlow实战》
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容