Linked: How everything is connected to everything else and what it means for business, science, and everyday life

June-1-2017

Chapter 7-1:  Rich get richer-Barabási–Albert model

1. Barabási–Albert generates the first scale-free network by combining this two laws:

In this graph, the network start from 2 nodes, in each panel a new node (empty circle) is added to the network and add two links to existing nodes, when decides which to link, the new node prefer the more connected ones.

Law A. Growth: for each given period of time we add a new node to the network. This step underscores the fact that networks are assembled one node at a time.

Why growth is important: because early nodes have more time than the latecomers to acquire links.

Law B. Preferential attachment: each new node is assumed to connect to the existing nodes with two links. The probability that it will choose a given node is proportional to the number of links the chosen node has. That is, given the choice between two nodes, one with twice as many links as the other, it is twice as likely that the now ndoe will connect to the more connected node.

Why Preferential attachment is necessary: with only the first law (only growth, new node randomly choose two existing nodes to link with), we will end up with a Bell curve like distribution instead of power laws.


2. Only growth or preferential attachment would not generate the power laws and hubs:

Model A

Model A retains growth but does not include the preferential attachment. The probability of a new node connecting to any pre-existing node is equal. The resulting degree distribution in this limit is geometric, indicating that growth alone is not sufficient to produce a scale-free structure.

Model B

Model B retains preferential attachment but eliminates growth. The model begins with a fixed number of disconnected nodes and adds links, preferentially choosing high degree nodes as link destinations. Though the degree distribution early in the simulation looks scale-free, the distribution is not stable, and it eventually becomes nearly Gaussian as the network nears saturation. So preferential attachment alone is not sufficient to produce a scale-free structure.

The failure of models A and B to lead to a scale-free distribution indicates that growth and preferential attachment are needed simultaneously to reproduce the stationary power-law distribution observed in real networks.


3. The evolution of Barabási–Albert 's scale-free network model

Internal links, rewiring, removal of nodes and links, aging, nonlinear effects, and many other processes affecting network topology and alter the way networks grow and evolve, inevitably changing the number and size of the hubs.

No matter how large and complex a network becomes, as long as growth and preferential attachment are simultaneously present, it will maintain its hub-dominated scale-free topology (hubs and power laws emerge as well).

Chapter 7-2: Properties of Barabási–Albert model 

1. Degree distribution

The degree distribution of the BA Model, which follows a power law. In log-log scale the power law function is a straight line.

The degree distribution resulting from the BA model is scale free, in particular, it is a power law of the form:


2. Average path length

The average path length of the BA model increases approximately logarithmically with the size of the network. The actual form has a double logarithmic correction and goes as:

The BA model has a systematically shorter average path length than a random graph.

3. Clustering coefficient

While there is no analytical result for the clustering coefficient of the BA model, the empirically determined clustering coefficients are generally significantly higher for the BA model than for random networks. The clustering coefficient also scales with network size following approximately a power law.


This behavior is still distinct from the behavior of small-world networks where clustering is independent of system size.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容