通过层次分析法(AHP),建立电商用户综合评分模型。(文末附破解版yaahp软件)

层次分析法(Analytic Hierarchy Process,简称AHP)定义:是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。关于层次分析法的具体解释大家可以使用搜索引擎搜索,篇幅有限,我们暂不展开。

一. 用户综合评分模型建立

1.从短期和中长期两个角度考虑用户综合评分模型

现实场景:一个用户经常光顾你的网站,有时只是来看看,有时候顺便买点东西,在计算这个用户的价值的时候,应该怎么做?是看TA最近一次购买行为,还是考虑用户在整个时间段内的表现?老祖宗早就告诉我们了,“日久见人心”。显然,用户行为错综复杂,一次网站会话行为可能只是管中窥豹,观察期留的长一些,才能建立更合理的评分模型。

本文的目旨在电商网站的用户建立起一个评分模型,动态计算出每个User的价值得分。我们从目标-用户评分出发,综合短期和中长期两个角度抽象出影响用户得分的因素作为准则层,然后选择准则层相应的指标层数据,建立一套科学的评分模型。

从短期来看,我们会关注用户活跃在在网站/APP上发生的一系列细致动作,浏览重点页面,点击预购等。因此,我们将影响目标层用户得分的第一个因素称之为“活跃度”。从中长期角度来看,用户的“忠诚度”和“购买能力”对用户得分影响至关重要。至此,我们确定了目标层为“用户价值得分”,影响目标层的准则层包含“活跃度”,“忠诚度”和“购买能力”。

2.用户综合评分指标选择

准则层确定后,就涉及到选择衡量“活跃度”,“忠诚度”和“购买能力”关键指标。有几个重要的原则可以参考:

可量化:能被衡量的,才能被改进,目前电商网站大多通过JS,SDK埋点或者服务器日志分析,所以基本的量化数据能够拿到;

有效性:要覆盖重要的数据维度,且在合理可以调控的范围内;

相互独立:指标间尽量保持不相关。

笔者和团队小伙伴共同讨论了一下,选定的适合我司电商用户的指标内容如下:

浏览页面数

停留时间

浏览商品数

主动下单数:一些真正购买前的微转化,如点击“立即购买”,“立即开团”按钮等动作

最近访问时间

用户访问频率

主动评价数

单次最高购买金额

平均每次购买金额

购买次数

3.适合于电商网站的用户综合评分模型

时间选择上,我们选择先选取近3个月的用户行为数据进行研究,因此“活跃度”对应的时间是“近三个月最后一次活跃的时候,即最近1天”,“忠诚度”和“购买能力”看的是“最近3个月”这个中长期时间段。实际业务中,按照已有的规则建立好数据表,每一天的数据自动入库,用户的评分是呈现随日期滑窗积累的效果,因此我们前面提到的是动态计算用户得分。至此,我们的用户综合评分模型如下:

图片发自简书App

二. 层次分析法(AHP)确定权重

目前,市面上可以搜到很多解决层次分析问题的软件,但是笔主认为思维比工具更重要,因此本文采用大家电脑里都有的Excel来解决这个问题,这样我们能把主要精力集中在实现方法上,而不是工具操作上。在用Excel实现AHP方法的时候,有两个重要问题需要解决:

构造判断矩阵:常见方法是小组投票,给出两两因素(例如A和B)间的比较值,1表示:A和B一样重要;3表示:A比B重要一些;5表示:A比B重要;7表示:A比B重要的多;9表示:A比B极其重要。这样,通过两两比较给出比较值,判断矩阵就出来了。如下图:可以看到“活跃度”,“忠诚度”和“购买能力”的判断矩阵

一致性检验:什么是一致性检验?举个例子,当两两比较认为A比B重要,B比C重要时,轮到A和C比较了,你给出C比A重要的比较值,此时就叫做“不一致”。层次分析法的计算不是简单得到一个结果,而是要得到一个令人满意的一致性的结果。

一致性的检验是通过计算一致性比例CR 来进行,其中CR=CI/RI,当CR<=0.1 时,认为判断矩阵的一致性是可以接受的,否则应对判断矩阵作适当修正,甚至推倒重做。

另外,公式中另外两个参数CI是一致性指标,RI是随机一致性指标,通过查表可以找到三阶矩阵的RI=0.5149,四阶矩阵的RI=0.8931。

这部分是数学知识,大家理解文章后可以直接拿来用,我们后面直接以下图“准则层”为例,阐述如何用Excel构建判断矩阵及单排序和一致性检验,想了解更多的,可以搜索引擎搜索一下。

图片发自简书App

判断矩阵构造:对角线上表示“活跃度”比“活跃度”,“忠诚度”比“忠诚度”,“购买能力”比“购买能力”,因此全部值都是“1”,然后左下角,将团队投票的两两比较值填入,右上角做倒数映射即可;

按行相乘:F6=PRODUCT(C6:E6),下拉

开n次方:G6==POWER(F6,1/3),下拉,而G9=SUM(G6:G8)

权重Wi: H6=G6/$G$9,下拉

分向量AWi:I6==C6*$H$6+D6*$H$7+E6*$H$8

AWi/Wi =I6/H6,而J9=AVERAGE(J6:J8)

CI=(人-n)(n-1) , 这里面“人”其实是希腊字母“兰姆达”,其实就是J9单元格的数字,我打不出这个字母,希望你们understand 我,谢谢!n代表变量数,准则层的n=3,经过计算CI=0

三阶矩阵RI=0.5149

CR=CI/RI=0

至此,我们构造的判断矩阵,一致性检验通过。红色标记的Wi即为相应的权重,即准则层相对目标层有如下公式:用户价值得分=0.4*活跃度 + 0.4*忠诚度 + 0.2*购买能力。

指标层相应的判断矩阵及单排序和一致性检验如下图,请大家参考。

图片发自简书App

三. 指标数据标准化

我们前面选定了每个准则层对应可以量化的指标,这些指标的数量值和单位不尽相同,我们需要将其采用同一种计量方法,这样才能进行比较。我们本次采用的是5分制,即要把所有的指标数据,不管是“浏览页面数”,“停留时间”,还是“单次最高购买金额”,都标准化到[0,5]。

如下图,我们拉取最近个月的用户数据,通过对原始数据进行分析,最后建立的标准化规则,不同网站/APP的具体标准化规则可能不同,需要依据原始数据来定。

第一行{0,1,2,3,4,5}表示标准化得分,即要把所有的指标数据映射到数据集里

黄色行表示实际原始数值

灰色字体行表示累计占比

图片发自简书App

以“浏览页面数”为例,首先拉取近三个月的原始数据,选择用户“最近1天”的在网站/APP上的活跃数据,如下图所示,左列表示用户id,右侧表示每个id在“最近1天”浏览的页面数。其次,按照PV进行从小到大的升序排列。第三,做截止到XXX-id为止的用户累计占比。因为是5分制,因此,理论上,找到累计占比约为“20%,30%,60%,80%”的,把相应的PV作为标准化后“1,2,3,4”数值的分割点即可。

有一点需要提醒,要尽可能保持原始数据被均匀标准化到[0,5],但是有的指标起点就非常高,比如“浏览商品数”指标,50.7%的用户没有浏览商品,那么接下来就要尽量在50%-100%之间均匀标准化。具体标准化过程,大家可以在实践中自己体会。

图片发自简书App

四. 数据结果和验证

前面工作顺利的话,应该会有如下图所示的一张表,以“客户ID”作维度,显示每一个客户对应“指标原始数据”,“准则层得分”以及“目标层得分”的数据。

图片发自简书App

我们使用tableau制图,进行数据分布的验证。如下图,当准则层,指标层权重系数确定,当指标标准化完成后,电商用户的价值得分出现如图所示的完美长尾分布。实际过程,从确定权重,要指标标准化这个过程,笔者和团队小伙伴进行了多次调参,和多次推到重做。所以,如果大家借鉴本文做其它平台用户综合评分模型,一定要有耐心。

Tableau图表中,我们用数据桶表示最终得分,纵坐标表示客户ID不重复计数,横坐标是标准化后的得分,横坐标为0.0的数据桶解读为“得分在[0,0.2)的客户占比为0.2%”,横坐标为0.2的数据桶解读为“得分在[0.2,0.4)的客户占比为16.64%”,依次类推。

图片发自简书App

五. 应用场景和意义

由于本文重点是给大家介绍建立电商用户综合评分模型的方法,针对应用场景和意义,笔者仅做抛砖引玉,欢迎大家主动思考,以及评论,同笔者交流。

首先,根据上一部分用户最终得分分布图,可以找到高价值用户(比如定义得分大于3分的用户),极低价值用户(比如定义得分小于0.2的用户)等等,不同类别的用户,做针对性的营销,甚至一对一的沟通和客户管理。

第二,目标层由指标层决定,我们用“活跃度”,“忠诚度”和“购买能力”三个维度,每个维度以中位数为分界线,得到2*2*2八大类用户集合。如下图所示为使用Tableau绘制的八大类用户占比情况。然后根据不同准则层的表现制定不同的沟通策略。

图片发自简书App

如下图为不同用户的沟通策略。

图片发自简书App

层次分析法常用软件,破解版yaahp软件,中间层个数可达99个,方案层个数可达99个,免费版的中间层、方案层个数只有3个哦,内含教程,永久使用:(输入网址获取)

层次分析法之yaahp软件,中间层、方案层99个,内含教程,提供技术支持! https://k.ruyu.com/l8veTM3e

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容