理解范畴论中单子需要的最小知识集

A monad is just a monoid in the category of endofunctors, what's the problem?

作为一个计算机工作者,这句话对你造成过多少点的装逼伤害?是时候弄明白这句话的意思了。

搞清楚Monad需要了解的概念

1. Category: 

注意:

1. Category与集合不同,不只包括元素(objects),还包括了元素之上的态射(morphisms),态射的二元运算∘还需满足结合律(associativity),并且对identity的存在性有要求。

2. 给定Category C,C的元素ob(C)是一个类(class),类是比集合(set)大的一个概念,两者区别可以从罗素悖论(Russell paradox)进一步了解。如果不想分散注意力,暂时可以认为该类就是一个集合。

3. 二元运算是态射的运算,不是元素的

2. Functor

Functor是个范畴与范畴之间的映射(mapping)。可以看作是范畴间的同态(homomorphism),其特点是保留结构(structure-preserving)的,所谓结构保留体现在不只映射元素,同时映射态射。如下图所示:

根据范畴的定义,很自然的可以得出:

3. Endofunctor

A functor that maps a category to itself.

endofunctor的概念很简单,但是,是不是endofunctor就是identity functor呢?并不是,如果那样想,就是给endofunctor额外的限制了。试着看下图

再来一图

4. Natural transformations

一句话解释,自然变换(Natural Transformation)就是对于属于Category C的任意X,F(X)到G(X)之间态射的集合。注意F(X)与G(X)都属于Category D。类比于codomain,自然变换在"co-category"上。

5. Monad

Monad简单说就是1+2,1个endofunctor+2个natural transformations。

η的含义比较简单,根据定义,1c是identity functor,显然是一个特殊的endofunctor。根据自然变换的定义1c->T不能理解。

μ的含义需要先理解T∘T的意思,即对范畴进行两次mapping,不难得出T∘T依然是endofunctor。

看个图:


看看什么是a monoid in the category of endofunctors

1. Monoid

2. The category of endofunctors

这个Category我们记作[C,C],简单说,就是所有C->C的endofunctors构成的范畴,这个范畴的元素是endofunctors,态射是自然变换。注意,[C,C]是一个monoidal category,这个在网上可以找到证明,此处不赘述。

So, A monad is a monoid in the category of endofunctors

到此时,很容易发现,什么是monad的两种描述,本质上描述的是相同的东西。就是一个1+2(1个endofunctors,加2个特殊的自然变换)

注意

wiki上还有定义说monoid是一个满足特殊条件的 Set,那到底monoid是Set还是Endofunctor呢?我在另外一篇文章做了解释。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容