数据结构-B树(B-tree、B-树)

B树是一种平衡的多路搜索树,多用于文件系统、数据库的实现




仔细观察B树,有什么眼前一亮的特点?

  • 1 个节点可以存储超过 2 个元素、可以拥有超过 2 个子节点
  • 拥有二叉搜索树的一些性质
  • 平衡,每个节点的所有子树高度一致
  • 比较矮

m阶B树的性质(m≥2)

假设一个节点存储的元素个数为 x
根节点:1 ≤ x ≤ m − 1
非根节点:┌ m/2 ┐ − 1 ≤ x ≤m − 1

如果有子节点,子节点个数 y = x + 1
根节点对应子节点个数:2 ≤ y ≤ m
非根节点对应子节点个数:┌ m/2 ┐ ≤ y ≤ m
➢ 比如 m = 3,2 ≤ y ≤ 3,因此可以称为(2, 3)树、2-3树
➢ 比如 m = 4,2 ≤ y ≤ 4,因此可以称为(2 4)树、2-3-4树
➢ 比如 m = 5,3 ≤ y ≤ 5,因此可以称为(3, 5)树
➢ 比如 m = 6,3 ≤ y ≤ 6,因此可以称为(3, 6)树
➢ 比如 m = 7,4 ≤ y ≤ 7,因此可以称为(4, 7)树

如果 m = 2,那B树就是二叉搜索树, 数据库实现中一般用(200 ~ 300)阶B树

B树 VS 二叉搜索树


  • B树 和 二叉搜索树,在逻辑上是等价的
  • 多代节点合并,可以获得一个超级节点
    2代合并的超级节点,最多拥有 4 个子节点(至少是 4阶B树)
    3代合并的超级节点,最多拥有 8 个子节点(至少是 8阶B树)
    n代合并的超级节点,最多拥有 2^n个子节点( 至少是 2^n阶B树)
  • m阶B树,最多需要 logm 代合并

搜索

◼ 跟二叉搜索树的搜索类似


  1. 先在节点内部从小到大开始搜索元素
  2. 如果命中,搜索结束
  3. 如果未命中,再去对应的子节点中搜索元素,重复步骤 1

添加

新添加的元素必定是添加到叶子节点


◼ 插入55

◼ 插入95

◼ 再插入 98 呢?(假设这是一棵 4阶B树)
最右下角的叶子节点的元素个数将超过限制
这种现象可以称之为:上溢(overflow

添加 – 上溢的解决(假设5阶)


◼ 上溢节点的元素个数必然等于 m
◼ 假设上溢节点最中间元素的位置为 k
k 位置的元素向上与父节点合并
将 [0, k-1] 和 [k + 1, m - 1] 位置的元素分裂成 2 个子节点
2 个子节点的元素个数,必然都不会低于最低限制(┌ m/2 ┐ − 1
◼ 一次分裂完毕后,有可能导致父节点上溢,依然按照上述方法解决
最极端的情况,有可能一直分裂到根节点

◼ 插入 54


删除 – 叶子节点

◼ 假如需要删除的元素在叶子节点中,那么直接删除即可



◼ 删除 30


删除 – 非叶子节点

◼ 假如需要删除的元素在非叶子节点中


  1. 先找到前驱后继元素,覆盖所需删除元素的值
  2. 再把前驱或后继元素删除

◼ 删除 60


非叶子节点的前驱或后继元素,必定在叶子节点中
所以这里的删除前驱或后继元素 ,就是最开始提到的情况:删除的元素在叶子节点中
真正的删除元素都是发生在叶子节点中

删除 – 下溢


◼ 删除 22 ?(假设这是一棵 5阶B树)
叶子节点被删掉一个元素后,元素个数可能会低于最低限制( ≥ ┌ m/2 ┐ − 1
这种现象称为:下溢(underflow

删除 – 下溢的解决

◼ 下溢节点的元素数量必然等于 ┌ m/2 − 2
◼ 如果下溢节点临近的兄弟节点,有至少 ┌ m/2 ┐ 个元素,可以向其借一个元素
将父节点的元素 b 插入到下溢节点的 0 位置(最小位置)
用兄弟节点的元素 a(最大的元素)替代父节点的元素 b
这种操作其实就是:旋转


◼ 如果下溢节点临近的兄弟节点,只有 ┌ m/2 ┐ − 1 个元素
将父节点的元素 b 挪下来跟左右子节点进行合并
合并后的节点元素个数等于┌ m/2 ┐ + ┌ m/2 ┐ − 2,不超过m − 1
这个操作可能会导致父节点下溢,依然按照上述方法解决,下溢现象可能会一直往上传播

示例:



◼ 删除 22 (假设这是一棵 5阶B树)


4阶B树

◼ 如果先学习4阶B树(2-3-4树),将能更好地学习理解红黑树
◼ 4阶B树的性质
p所有节点能存储的元素个数 x :1 ≤ x ≤ 3
p所有非叶子节点的子节点个数 y :2 ≤ y ≤ 4

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,100评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,862评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,993评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,309评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,303评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,421评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,830评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,501评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,689评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,506评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,564评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,286评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,826评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,875评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,114评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,705评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,269评论 2 341