树结构

树:层次关系
Tree :n个节点构成的有限集合;
n=0时;称为空树;
对于非空树,具备特质有:

  • 树中有一个根的特殊节点,用r解释;
  • 子树;
    树与非树?
  • 子树是不想交的;
  • 除了根节点外,每个结点点有且仅有一个父节点;
  • 一棵N个结点的树有N-1条边;

基本术语

1、 结点的度 结点的子树个数
2、树的度:树的所有结点最大的度数
3、叶结点:度为1的结点;
4、父节点:有子树的结点是其子树的根节点的父节点
5、子节点;
6、兄弟结点:同一父节点的各结点是彼此的兄弟结点;
7、路径和路径长度;
8、祖先结点;
9、子孙节点;
11、结点的层次;
12、树的深度;

实现方法


image.png

二叉树:度为2;
特殊二叉树

  • 斜二叉树
  • 完美二叉树/满二叉树
  • 完全二叉树(不完整)

重要性质

二叉树第i层最大结点 2^(n-1)
深度为k的二叉树最大结点总数为2^n-1
非空二叉树 n0为叶节点的个数 n2为度为2的非叶节点个数 满足n0=n2+1;

常用的遍历方法:
先序--根,左子树,右子树
中序--左子树,根,右子树
后续--左子树,右子树,根
层次遍历--从上到下,从左到右

二叉树的存储结构

顺序存储结构

-完全二叉树
:从上到下、从左到右顺序存储n个节点的完全二叉树的节点父子关系。

  • 父根节点 父节点[i/2]
  • 左孩子节点 2i
  • 右孩子节点2i+1
    一般二叉树也可以采取这种结构,但会造成空间浪费。

链表存储

template <typename DataType>
struct TreeNode
{
    DataType data; //存储的数据
    TreeNode *left; //指向左子树根节点
    TreeNode *right; //指向右子树根节点
    //TreeNode * parent; //指向父节点,如果需要的话
    TreeNode(DataType inData): data(inData), right(nullptr), left(nullptr) {}
};
image.png

遍历

//遍历
//先序遍历
template <typename DataType>
void Traverse(TreeNode<DataType> * inNode){
    if (inNode == nullptr){
    return;
    }
    //cout<<inNode->data<<endl;//如果在这里访问即为先序访问
    Traverse(inNode->left);
    //cout<<inNode->data<<endl;//如果在这里访问即为中序访问
    Traverse(inNode->right);
    //cout<<inNode->data<<endl;//如果在这里访问即为后序访问
    return;
}

二叉树的非递归算法

先序遍历的非递归:使用堆栈

template <typename DataType>
void NonRecursiveTraverse(TreeNode<DataType> * inNode){
    stack<TreeNode<DataType>*> nodeStack;
    TreeNode<DataType> *cycleNode = inNode;
    while(inNode != nullptr||!nodeStack.empty()){
        //不断访问某一节点的左子节点并压栈知道最左子节点
        while(cycleNode != nullptr){
            //遇到节点先输出
            cout<<cycleNode->data<<endl;
            nodeStack.push(cycleNode);
            cycleNode = cycleNode->left;
        }
        //此时所有的左子树都压入栈中
        //弹出最后一个节点 访问该节点的右子节点并作为下一步作为下一轮遍历节点
        if(!inNode.empty()){
            cycleNode = nodeStack.top();
            cycleNode = cycleNode->right;
            nodeStack.pop();
        }
    }
}

中序遍历:先访问左子节点,在访问根节点,再访问右子节点。

template <typename DataType>
void NonRecursiveTraverse(TreeNode<DataType> * inNode){
    stack<TreeNode<DataType>*> nodeStack;
    TreeNode<DataType> *cycleNode = inNode;
    while(inNode != nullptr||!nodeStack.empty()){
        //不断访问某一节点的左子节点并压栈知道最左子节点
        while(cycleNode != nullptr){   
            nodeStack.push(cycleNode);
            cycleNode = cycleNode->left;
        }
        //此时所有的左子树都压入栈中
        //弹出最后一个节点 访问该节点的右子节点并作为下一步作为下一轮遍历节点
        if(!inNode.empty()){
            cycleNode = nodeStack.top();
            //在此处访问即为中序遍历,时机为压入右子节点之前
        //cout << cycleNode->data << endl; 
            cycleNode = cycleNode->right;
            nodeStack.pop();
        }
    }
}

由于辅助压栈,我们并没有将null压入栈中,如果发现左子节点为null则在保存右子节点地址后直接弹出该节点,并使用右子节点作为下一论访问起始节点,如果右子节点为null则表示该节点左右子树均遍历完毕,则继续弹出直至出现第一个右子树不为空的节点,重复递归。

压栈图中,在前序遍历时,只要遇到节点(压栈过程)就直接输出就可以保证根节点首先被输出,而中序遍历由于需要在左子树输出完毕后才能输出,因此只要保证在压栈返回时(出栈时)且准备遍历右子树时输出即可。

后序遍历 非递归实现

template <typename DataType>
void NonRecursiveTraverse(TreeNode<DataType> *inNode){
        stack<TreeNode<DataType> *>nodeStack;
        TreeNode<DataType> *cycleNode = inNode;
        TreeNode<DataType> *hasNode = nullptr;
        while(inNode != nullptr || !nodeStack.empty()){
            //不断访问某一节点的左子节点并压栈直到最左子节点
            while(cycleNode != nullptr){
                nodeStack.push(cycleNode);
                cycleNode = cycleNode->left;
            }
            //此时所有的子节点都已经压入栈中。
            //弹出最后一个节点,访问该节点的右子节点并作为下一轮遍历根节点
            if(!nodeStack.empty()){
                cycleNode = nodeStack.top();
                //此时判别是否已经加载右子树
                //如果为空则和中序遍历一样
                if(cycleNode->right == nullptr){
                    hascycle = cycleNode;
                    cout<< cycleNode->data<<endl;
                    nodeStack.pop();
                }
                else if(hascycle == cycleNOde->right){
                    hascycle = cycleNode;
                    cout<<cycleNode->data<<endl;
                    nodeStack.pop();
                }
                cycleNode = nullptr;
                if(!nodeStack.empty() && ndoeStack.top->right!=nullptr)) {
                    cycleNode = nodeStack.top()->right;
                }
            }
        }
}

层序遍历

二叉树遍历的核心问题:二维结构的线性化

  • 从节点访问其左、右儿子
  • 需要一个存储结构保存暂时不访问的结点
  • 存储结构:堆栈、队列

队列实现:遍历从根节点开始,首先将根节点入队,然后开始执行循环:结点出队,访问该结点,将左右儿子入队

void LevelOrderTraversal ( BinTree BT){
    Queue Q;BinTree T;
    //如果是空树直接返回
    if(!BT)
        return ;
    //创建并初始化队列Q
    Q = CreatQueue(Maxsize);
    AddQ(Q,BT);
    while( !IsEmptyQ(Q)){
        T = DeleteQ(Q);
        cout  <<T->data<<endl;
        if(T->left)   
            AddQ(Q,T->left);
        if(T->right)
            AddQ(Q,T->right)
    }
}

如果有两个遍历序列确定二叉树

必须要有中序遍历
如果已知先序和中序;

  1. 根据先序遍历序列第一个节点确定根节点;
  2. 根绝根节点在中序遍历序列中分割出左右两个子序列
  3. 对左子树和右子树分别递归分为左子树和右子树

二叉查找树的定义与实现

静态查找:二分查找
动态查找:二叉搜索树;
也称为二叉排序树,或者二叉查找树;

  • 分空左子树的所有键值小于其根节点的键值。
  • 分空右子树的所有键值大于其根节点的键值。
  • 左右子树都是二叉搜索树。

对于二叉树ADT,一般需要提供以下操作:

  • 清空二叉查找树:MakeEmpty
  • 查找某个节点:Find
  • 删除某个节点:DeleteElement
  • 查找最大值:FindMax
  • 查找最小值:FindMin
  • 插入一个节点:InsertElement
    二叉查找树的平均深度为O(log(N)),不过如果插入元素序列递增或者递减,二叉查找树将退化成单链表。

二叉查找树的实现

二叉树的基本结构定义:

template <typename DataType>
struct Node
{
    DataType data;
    Node *left;
    Node *right;
    Node(DataType inData): data(inData), left(nullptr), right(nullptr) {}
};

template <typename DataType>
class BinarySearchTree
{
public:
    BinarySearchTree(): root(nullptr) {}
    ~BinarySearchTree();
    void MakeEmpty(); //清空二叉查找树
    void MakeEmptyNon(); //非递归清空二叉树
    Node<DataType> * Find(DataType inElement); //查找某个元素
    Node<DataType> * FindNon(DataType inElement); //非递归查找
    void DeleteElement(DataType inElement); //删除一个节点
    Node<DataType> * FindMax(); //查找最大元素
    Node<DataType> * FindMaxNon(); //非递归查找最大元素
    Node<DataType> * FindMin(); //查找最小元素
    Node<DataType> * FindMinNon(); //非递归查找最小元素
    Node<DataType> * InsertElementNon(DataType inElement); //非递归插入一个元素
private:
    void MakeEmptyCore(Node<DataType> *inNode);
    Node<DataType> *FindCore(Node<DataType> *inNode, DataType inElement);
    //删除一个节点
    Node<DataType> * DeleteElementCore(Node<DataType> *inNode, DataType inElement);
    Node<DataType> *FindMaxCore(Node<DataType> *inNode);
    Node<DataType> *FindMinCore(Node<DataType> *inNode);
    Node<DataType> *root;
};

二叉查找树的基本数据成员为
递归清空核心函数:

template <typename DataType>
void BinarySearchTree<DataType>::MakeEmptyCore(Node<DataType> *inNode)
{
    if (inNode == nullptr) {
        return;
    }
    MakeEmptyCore(inNode->left);
    MakeEmptyCore(inNode->right);
    delete inNode;
}

递归清空核心函数

template <typename DataType>
void BinarySearchTree<DataType>::MakeEmptyCore(Node<DataType> *inNode)
{
    if (inNode == nullptr) {
        return;
    }
    MakeEmptyCore(inNode->left);
    MakeEmptyCore(inNode->right);
    delete inNode;
}

递归清空入口函数,调用清空核心函数

template <typename DataType>
void BinarySearchTree<DataType>::MakeEmpty()
{
    MakeEmptyCore(root); root = nullptr;
}

非递归清空函数,采用某种非递归遍历函数思想即可

template <typename DataType>
void BinarySearchTree<DataType>::MakeEmptyNon()
{
    stack<Node<DataType> *> nodeStack;
    Node<DataType> *cycleIter = root;
    while (cycleIter != nullptr || !nodeStack.empty()) {
        while (cycleIter != nullptr) {
            nodeStack.push(cycleIter);
            cycleIter = cycleIter->left;
        }
        
        if (!nodeStack.empty()) {
            Node<DataType> * tmp = nodeStack.top();
            cycleIter = tmp->right;
            delete tmp; nodeStack.pop();
        }
    }
    root = nullptr;
}

递归查找某个元素

template <typename DataType>
Node<DataType> *BinarySearchTree<DataType>::FindCore(Node<DataType> *inNode, DataType inElement)
{
    if (inNode == nullptr) {
        return nullptr;
    }
    if (inNode->data == inElement) {
        return inNode;
    }
    else if (inNode->data > inElement){
        return FindCore(inNode->left, inElement);
    }
    else {
        return FindCore(inNode->right, inElement);
    }
    return nullptr;
}

非递归查找

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::FindNon(DataType inElement)
{
    Node<DataType> *cycleIter = root;
    while (cycleIter != nullptr) {
        if (cycleIter->data == inElement) {
            return cycleIter;
        }
        else if (cycleIter->data > inElement){
            cycleIter = cycleIter->left;
        }
        else {
            cycleIter = cycleIter->right;
        }
    }
    return nullptr;
}

递归删除节点函数核心函数

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::DeleteElementCore(Node<DataType> *inNode, DataType inElement)
{
    if (inNode == nullptr) {
        return nullptr;
    }
    else if (inNode->data > inElement) {
        inNode->left = DeleteElementCore(inNode->left, inElement);
    }
    else if (inNode->data < inElement) {
        inNode->right = DeleteElementCore(inNode->right, inElement);
    }
    else {
        if (inNode->left != nullptr && inNode->right != nullptr) {
            Node<DataType> *tmp = FindMinCore(inNode->right);
            inNode->data = tmp->data;
            inNode->right = DeleteElementCore(inNode->right, inNode->data);
        }
        else {
            Node<DataType> *tmp = inNode;
            if (inNode->left == nullptr) {
                inNode = inNode->right;
            }
            else {
                inNode = inNode->left;
            }
            delete  tmp;
        }
    }
    return inNode;
}

递归查找最大元素核心函数

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::FindMaxCore(Node<DataType> *inNode)
{
    if (inNode == nullptr) {
        return nullptr;
    }
    else if (inNode->right == nullptr) {
        return inNode;
    }
    else {
        return FindMaxCore(inNode->right);
    }
}

递归查找最大元素

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::FindMax()
{
    if (root == nullptr) {
        return nullptr;
    }
    return FindMaxCore(root);
}

非递归查找最大元素

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::FindMaxNon()
{
    if (root == nullptr) {
        return nullptr;
    }
    Node<DataType> *pre = root;
    Node<DataType> *cycleIter = pre->right;
    while (cycleIter != nullptr) {
        pre = cycleIter;
        cycleIter = pre->right;
    }
    return pre;
}

递归删除节点函数核心元素

template <typename DataType>
Node<DataType> * BinarySearchTree<DataType>::DeleteElementCore(Node<DataType> *inNode, DataType inElement)
{
    if (inNode == nullptr) {
        return nullptr;
    }
    else if (inNode->data > inElement) {
        inNode->left = DeleteElementCore(inNode->left, inElement);
    }
    else if (inNode->data < inElement) {
        inNode->right = DeleteElementCore(inNode->right, inElement);
    }
    else {
        if (inNode->left != nullptr && inNode->right != nullptr) {
            Node<DataType> *tmp = FindMinCore(inNode->right);
            inNode->data = tmp->data;
            inNode->right = DeleteElementCore(inNode->right, inNode->data);
        }
        else {
            Node<DataType> *tmp = inNode;
            if (inNode->left == nullptr) {
                inNode = inNode->right;
            }
            else {
                inNode = inNode->left;
            }
            delete  tmp;
        }
    }
    return inNode;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容

  • 基于树实现的数据结构,具有两个核心特征: 逻辑结构:数据元素之间具有层次关系; 数据运算:操作方法具有Log级的平...
    yhthu阅读 4,227评论 1 5
  • B树的定义 一棵m阶的B树满足下列条件: 树中每个结点至多有m个孩子。 除根结点和叶子结点外,其它每个结点至少有m...
    文档随手记阅读 13,140评论 0 25
  • AA树 红黑树的编程相当复杂,AA树是一颗带有条件的红黑树,相当情况下简化了红黑树的编程. AA树规定只有右孩子才...
    fredal阅读 1,046评论 0 6
  • 树的概述 树是一种非常常用的数据结构,树与前面介绍的线性表,栈,队列等线性结构不同,树是一种非线性结构 1.树的定...
    Jack921阅读 4,422评论 1 31
  • 目录 0.树0.1 一般树的定义0.2 二叉树的定义 1.查找树ADT 2.查找树的实现2.1 二叉查找树2.2 ...
    王侦阅读 7,102评论 0 3