【机器学习实战】第2章 k-近邻算法(KNN)

第2章 k-近邻算法

k-近邻算法首页

KNN 概述

k-近邻(kNN, k-NearestNeighbor)算法主要是用来进行分类的.

KNN 场景

电影可以按照题材分类,那么如何区分 动作片爱情片 呢?

  1. 动作片:打斗次数更多
  2. 爱情片:亲吻次数更多

基于电影中的亲吻、打斗出现的次数,使用 k-近邻算法构造程序,就可以自动划分电影的题材类型。

电影按照题材分类
现在根据上面我们得到的样本集中所有电影与未知电影的距离,按照距离递增排序,可以找到 k 个距离最近的电影。
假定 k=3,则三个最靠近的电影依次是, He's Not Really into Dudes 、 Beautiful Woman 和 California Man。
knn 算法按照距离最近的三部电影的类型,决定未知电影的类型,而这三部电影全是爱情片,因此我们判定未知电影是爱情片。

KNN 原理

KNN 工作原理

  1. 假设有一个带有标签的样本数据集(训练样本集),其中包含每条数据与所属分类的对应关系。
  2. 输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较。
    1. 计算新数据与样本数据集中每条数据的距离。
    2. 对求得的所有距离进行排序(从小到大,越小表示越相似)。
    3. 取前 k (k 一般小于等于 20 )个样本数据对应的分类标签。
  3. 求 k 个数据中出现次数最多的分类标签作为新数据的分类。

KNN 开发流程

收集数据:任何方法
准备数据:距离计算所需要的数值,最好是结构化的数据格式
分析数据:任何方法
训练算法:此步骤不适用于 k-近邻算法
测试算法:计算错误率
使用算法:输入样本数据和结构化的输出结果,然后运行 k-近邻算法判断输入数据分类属于哪个分类,最后对计算出的分类执行后续处理

KNN 算法特点

优点:精度高、对异常值不敏感、无数据输入假定
缺点:计算复杂度高、空间复杂度高
适用数据范围:数值型和标称型

KNN 项目案例

项目案例1: 优化约会网站的配对效果

项目概述

海伦使用约会网站寻找约会对象。经过一段时间之后,她发现曾交往过三种类型的人:

  • 不喜欢的人
  • 魅力一般的人
  • 极具魅力的人

她希望:

  1. 工作日与魅力一般的人约会
  2. 周末与极具魅力的人约会
  3. 不喜欢的人则直接排除掉

现在她收集到了一些约会网站未曾记录的数据信息,这更有助于匹配对象的归类。

开发流程

收集数据:提供文本文件
准备数据:使用 Python 解析文本文件
分析数据:使用 Matplotlib 画二维散点图
训练算法:此步骤不适用于 k-近邻算法
测试算法:使用海伦提供的部分数据作为测试样本。
        测试样本和非测试样本的区别在于:
            测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

收集数据:提供文本文件

海伦把这些约会对象的数据存放在文本文件 datingTestSet2.txt 中,总共有 1000 行。海伦约会的对象主要包含以下 3 种特征:

  • 每年获得的飞行常客里程数
  • 玩视频游戏所耗时间百分比
  • 每周消费的冰淇淋公升数

文本文件数据格式如下:

40920   8.326976    0.953952    3
14488   7.153469    1.673904    2
26052   1.441871    0.805124    1
75136   13.147394   0.428964    1
38344   1.669788    0.134296    1

准备数据:使用 Python 解析文本文件

将文本记录转换为 NumPy 的解析程序

def file2matrix(filename):
   """
   Desc:
       导入训练数据
   parameters:
       filename: 数据文件路径
   return: 
       数据矩阵 returnMat 和对应的类别 classLabelVector
   """
   fr = open(filename)
   # 获得文件中的数据行的行数
   numberOfLines = len(fr.readlines())
   # 生成对应的空矩阵
   # 例如:zeros(2,3)就是生成一个 2*3的矩阵,各个位置上全是 0 
   returnMat = zeros((numberOfLines, 3))  # prepare matrix to return
   classLabelVector = []  # prepare labels return
   fr = open(filename)
   index = 0
   for line in fr.readlines():
       # str.strip([chars]) --返回移除字符串头尾指定的字符生成的新字符串
       line = line.strip()
       # 以 '\t' 切割字符串
       listFromLine = line.split('\t')
       # 每列的属性数据
       returnMat[index, :] = listFromLine[0:3]
       # 每列的类别数据,就是 label 标签数据
       classLabelVector.append(int(listFromLine[-1]))
       index += 1
   # 返回数据矩阵returnMat和对应的类别classLabelVector
   return returnMat, classLabelVector

分析数据:使用 Matplotlib 画二维散点图

import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2], 15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()

下图中采用矩阵的第一和第三列属性得到很好的展示效果,清晰地标识了三个不同的样本分类区域,具有不同爱好的人其类别区域也不同。

KNN散点图
序号 玩视频游戏所耗时间百分比 每年获得的飞行常客里程数 每周消费的冰淇淋公升数 样本分类
1 0.8 400 0.5 1
2 12 134 000 0.9 3
3 0 20 000 1.1 2
4 67 32 000 0.1 2

样本3和样本4的距离:


计算样本3 和 样本4 的距离

归一化特征值,消除特征之间量级不同导致的影响

def autoNorm(dataSet):
    """
    Desc:
        归一化特征值,消除特征之间量级不同导致的影响
    parameter:
        dataSet: 数据集
    return:
        归一化后的数据集 normDataSet. ranges和minVals即最小值与范围,并没有用到

    归一化公式:
        Y = (X-Xmin)/(Xmax-Xmin)
        其中的 min 和 max 分别是数据集中的最小特征值和最大特征值。该函数可以自动将数字特征值转化为0到1的区间。
    """
    # 计算每种属性的最大值、最小值、范围
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    # 极差
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    # 生成与最小值之差组成的矩阵
    normDataSet = dataSet - tile(minVals, (m, 1))
    # 将最小值之差除以范围组成矩阵
    normDataSet = normDataSet / tile(ranges, (m, 1))  # element wise divide
    return normDataSet, ranges, minVals

训练算法:此步骤不适用于 k-近邻算法

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

测试算法:使用海伦提供的部分数据作为测试样本。如果预测分类与实际类别不同,则标记为一个错误。

kNN 分类器针对约会网站的测试代码

def datingClassTest():
    """
    Desc:
        对约会网站的测试方法
    parameters:
        none
    return:
        错误数
    """
    # 设置测试数据的的一个比例(训练数据集比例=1-hoRatio)
    hoRatio = 0.1  # 测试范围,一部分测试一部分作为样本
    # 从文件中加载数据
    datingDataMat, datingLabels = file2matrix('input/2.KNN/datingTestSet2.txt')  # load data setfrom file
    # 归一化数据
    normMat, ranges, minVals = autoNorm(datingDataMat)
    # m 表示数据的行数,即矩阵的第一维
    m = normMat.shape[0]
    # 设置测试的样本数量, numTestVecs:m表示训练样本的数量
    numTestVecs = int(m * hoRatio)
    print 'numTestVecs=', numTestVecs
    errorCount = 0.0
    for i in range(numTestVecs):
        # 对数据测试
        classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :], datingLabels[numTestVecs:m], 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
        if (classifierResult != datingLabels[i]): errorCount += 1.0
    print "the total error rate is: %f" % (errorCount / float(numTestVecs))
    print errorCount

使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。

约会网站预测函数

def clasdifyPerson():
    resultList = ['not at all', 'in small doses', 'in large doses']
    percentTats = float(raw_input("percentage of time spent playing video games ?"))
    ffMiles = float(raw_input("frequent filer miles earned per year?"))
    iceCream = float(raw_input("liters of ice cream consumed per year?"))
    datingDataMat, datingLabels = file2matrix('datingTestSet2.txt')
    normMat, ranges, minVals = autoNorm(datingDataMat)
    inArr = array([ffMils, percentTats, iceCream])
    classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels, 3)
    print "You will probably like this person: ", resultList[classifierResult - 1]

实际运行效果如下:

>>> kNN.classifyPerson()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
You will probably like this person: in small doses

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py

项目案例2: 手写数字识别系统

项目概述

构造一个能识别数字 0 到 9 的基于 KNN 分类器的手写数字识别系统。

需要识别的数字是存储在文本文件中的具有相同的色彩和大小:宽高是 32 像素 * 32 像素的黑白图像。

开发流程

收集数据:提供文本文件。
准备数据:编写函数 img2vector(), 将图像格式转换为分类器使用的向量格式
分析数据:在 Python 命令提示符中检查数据,确保它符合要求
训练算法:此步骤不适用于 KNN
测试算法:编写函数使用提供的部分数据集作为测试样本,测试样本与非测试样本的
         区别在于测试样本是已经完成分类的数据,如果预测分类与实际类别不同,
         则标记为一个错误
使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取
         数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

收集数据: 提供文本文件

目录 trainingDigits 中包含了大约 2000 个例子,每个例子内容如下图所示,每个数字大约有 200 个样本;目录 testDigits 中包含了大约 900 个测试数据。

KNN 手写数字识别示例

准备数据: 编写函数 img2vector(), 将图像文本数据转换为分类器使用的向量

将图像文本数据转换为向量

def img2vector(filename):
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readLine()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

分析数据:在 Python 命令提示符中检查数据,确保它符合要求

在 Python 命令行中输入下列命令测试 img2vector 函数,然后与文本编辑器打开的文件进行比较:

>>> testVector = kNN.img2vector('testDigits/0_13.txt')
>>> testVector[0,0:31]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
>>> testVector[0,31:63]
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

训练算法:此步骤不适用于 KNN

因为测试数据每一次都要与全量的训练数据进行比较,所以这个过程是没有必要的。

测试算法:编写函数使用提供的部分数据集作为测试样本,如果预测分类与实际类别不同,则标记为一个错误

def handwritingClassTest():
    # 1. 导入训练数据
    hwLabels = []
    trainingFileList = listdir('input/2.KNN/trainingDigits')  # load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m, 1024))
    # hwLabels存储0~9对应的index位置, trainingMat存放的每个位置对应的图片向量
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]  # take off .txt
        classNumStr = int(fileStr.split('_')[0])
        hwLabels.append(classNumStr)
        # 将 32*32的矩阵->1*1024的矩阵
        trainingMat[i, :] = img2vector('input/2.KNN/trainingDigits/%s' % fileNameStr)

    # 2. 导入测试数据
    testFileList = listdir('input/2.KNN/testDigits')  # iterate through the test set
    errorCount = 0.0
    mTest = len(testFileList)
    for i in range(mTest):
        fileNameStr = testFileList[i]
        fileStr = fileNameStr.split('.')[0]  # take off .txt
        classNumStr = int(fileStr.split('_')[0])
        vectorUnderTest = img2vector('input/2.KNN/testDigits/%s' % fileNameStr)
        classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
        print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
        if (classifierResult != classNumStr): errorCount += 1.0
    print "\nthe total number of errors is: %d" % errorCount
    print "\nthe total error rate is: %f" % (errorCount / float(mTest))

使用算法:本例没有完成此步骤,若你感兴趣可以构建完整的应用程序,从图像中提取数字,并完成数字识别,美国的邮件分拣系统就是一个实际运行的类似系统

完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/2.KNN/kNN.py


最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容