深度卷积神经网络各种改进结构块汇总

1、残差网络

这个网络主要源自于Resnet网络,其作用是:
将靠前若干层的某一层数据输出直接跳过多层引入到后面数据层的输入部分。
意味着后面的特征层的内容会有一部分由其前面的某一层线性贡献。
实验表明,残差网络更容易优化,并且能够通过增加相当的深度来提高准确率。

最终可以使得网络越来越深,Resnet152就是一个很深很深的网络。

残差网络的典型结构如下:


image.png

2、不同大小卷积核并行卷积

这个结构主要是在Inception网络结构中出现。
Inception网络采用不同大小的卷积核,使得存在不同大小的感受野,最后实现拼接达到不同尺度特征的融合。

不同大小卷积核并行卷积的典型结构如下:


image.png

3、利用(1,x),(x,1)卷积代替(x,x)卷积

这种结构主要利用在InceptionV3中。
利用1x7的卷积和7x1的卷积代替7x7的卷积,这样可以只使用约(1x7 + 7x1) / (7x7) = 28.6%的计算开销;利用1x3的卷积和3x1的卷积代替3x3的卷积,这样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。
下图利用1x7的卷积和7x1的卷积代替7x7的卷积。


image.png

下图利用1x3的卷积和3x1的卷积代替3x3的卷积。


image.png

4、采用瓶颈(Bottleneck)结构

这个结构在Resnet里非常常见,其它网络也有用到。
所谓Bottleneck结构就是首先利用1x1卷积层进行特征压缩,再利用3x3卷积网络进行特征提取,再利用1x1卷积层进行特征扩张。

该结构相比于直接对输入进行3x3卷积减少了许多参数量。

当输入为26,26,512时,直接使用3x3、filter为512的卷积网络的参数量为512x3x3x512=2,359,296。

采用Bottleneck结构的话,假设其首先利用1x1、filter为128卷积层进行特征压缩,再利用3x3、filter为128的卷积网络进行特征提取,再利用1x1、filter为512的卷积层进行特征扩张,则参数量为 512×1×1×128 + 128×3×3×128 + 128×1×1×512 = 278,528。

image.png

5、深度可分离卷积

深度可分离卷积主要在MobileNet模型上应用。
其特点是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,在利用1x1的卷积调整厚度。

image.png

假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。

应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。

6、改进版深度可分离卷积+残差网络

这种结构主要存在在Xception网络中。
改进版深度可分离卷积就是调换了一下深度可分离的顺序,先进行1x1卷积调整通道,再利用3x3卷积提取特征。
和普通的深度可分离卷积相比,参数量也会有一定的变化。


image.png

改进版深度可分离卷积加上残差网络的结构其实和它的名字是一样的,很好理解。
如下图所示:


image.png

7、倒转残差(Inverted residuals)结构

在ResNet50里我们认识到一个结构,bottleneck design结构,在3x3网络结构前利用1x1卷积降维,在3x3网络结构后,利用1x1卷积升维,相比直接使用3x3网络卷积效果更好,参数更少,先进行压缩,再进行扩张。

而Inverted residuals结构,在3x3网络结构前利用1x1卷积升维,在3x3网络结构后,利用1x1卷积降维,先进行扩张,再进行压缩。
这种结构主要用在MobilenetV2中。
其主要结构如下:

image.png

8、并行空洞卷积

这个结构出现在Deeplabv3语义分割中。


image.png

其经过并行的空洞卷积,分别用不同rate的空洞卷积进行特征提取,再进行合并,再进行1x1卷积压缩特征。

空洞卷积可以在不损失信息的情况下,加大了感受野,让每个卷积输出都包含较大范围的信息。如下就是空洞卷积的一个示意图,所谓空洞就是特征点提取的时候会跨像素。


image.png

原文链接:https://blog.csdn.net/weixin_44791964/article/details/103042733

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,552评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,666评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,519评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,180评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,205评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,344评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,781评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,449评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,635评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,467评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,515评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,217评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,775评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,851评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,084评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,637评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,204评论 2 341

推荐阅读更多精彩内容