2018-05-29 3D数学05(第七章)-矩阵

第一节:矩阵的数学定义

1.矩阵的定义

  在线性代数中,矩阵就是以行和列形式组成的矩形数字块(向量是标量的数组,矩阵是向量的数组)。

2.矩阵的记法

  矩阵我们通常使用大中括号来表示,也可以使用竖线的方式来表示,通常用大写字母来表示矩阵。当使用矩阵的分量时,我们用下标法来表示矩阵的分量,注意的是矩阵的分量是从1开始,而不是0。


3.方阵

  行数和列数相同的矩阵称为方阵。方阵的概念非常重要,通常在3D中使用的矩阵就是2x2,3x3,4x4方阵。

方阵的对角线元素就是方阵中分量行号和列号相同的元素,例如3x3矩阵中的m11,m22,m33这三个分量就是对角线元素,其他的元素则是非对角线元素


4.对角矩阵

  在方阵中,如果非对角元素都为0,则该方阵称为对角矩阵。例如


5.单位矩阵

  在对角矩阵中,如果对角线元素都为1,则该对角矩阵为单位矩阵。单位矩阵是一种特殊的对角矩阵,单位矩阵乘以任意矩阵得到都是原来的矩阵。例如,3D单位矩阵如下

6.向量的矩阵含义

  向量也可以看做为矩阵,行向量可以看做是1xn矩阵,列向量可以看做nx1矩阵。

7.矩阵的转置

所谓的矩阵的转置就是将矩阵的行元素变为矩阵的列元素,将矩阵的列元素变为矩阵的行元素,矩阵M的转置记做MT。


行向量的矩阵转置为列向量,列向量的矩阵转置为行向量。

对于任意对角矩阵D,都有DT=D,同样对于单位矩阵I,都有IT= I。

对于任意矩阵D,都有(DT)T =D,即矩阵转置两次等于其本身。

8.标量和矩阵的乘法

  标量k和矩阵M相乘会得到一个和原矩阵维数相同的矩阵N,矩阵N的每个元素等于矩阵M的每个元素与标量k相乘,公式如下。


9.矩阵与矩阵的乘法

  矩阵的乘法定义为一个r x n矩阵A与一个n x c矩阵B相乘,则得到一个r x c矩阵AB。

  例如一个4 x 2矩阵A与一个2 x 5矩阵B相乘,得到的是一个4x5矩阵AB。


对于新得到的矩阵AB记做C,则矩阵C的每个元素Cij等于矩阵A第i行向量与矩阵B第j列向量的点乘结果。示例如下


矩阵C的元素c24就等于矩阵A的第二行向量与矩阵B的第4行向量的点乘的结果。

10.向量与矩阵的乘法

  因为向量也属于矩阵,所以也必须要满足矩阵与矩阵的乘法规则,所以对于行向量而言,行向量要左乘矩阵,对于列向量而言,列向量要右乘矩阵。行向量和列向量与一个相同的矩阵相乘的时候会得到不同的结果,因此我们要注意这是行向量和列向量的区别之一,在进行矩阵运算时特别小心。

  示例如下,对于行向量和列向量而言,得到的结果是不一样的。


我们觉得使用行向量是比较符合的,以为行向量是左乘矩阵,符合我们的书写和理解,例如vABC,行向量v乘以3个矩阵得到最后的向量。但是对于ABCh,列向量h要从右往左乘才符合我们的理解。在DX3中使用的是行向量,但是在OpenGL中使用的是列向量,因此在运算前要注意行向量和列向量的转置才能保证不会出现计算的问题。

第二节:矩阵的几何解释

1.2D向量与矩阵相乘的几何意义

  对于2D向量v乘以矩阵M得到的依然是2D向量,所以我们可以理解矩阵M是对向量v的一种坐标变换。

2D向量由原来的[1 1]变换为了[1 3]在几何中的表示如下,我们可以将矩阵M的每一行都能解释为转换后的基向量。所以原来的向量[1 1]可以被分解为[1 0]和[0 1],矩阵可以分解为[2 1]和[-1 2],那么可以看做基向量x,y轴从向量v变换到矩阵M。


我们发现不光是2D向量v进行了变换,在这一个区域里的点都得到了关于矩阵M的变换。我们可以用下面的小机器人来表示。、


线性空间中的对象为向量,那么什么是向量?应该怎么描述?这就需要基。基是组成向量的基本元素,也是衡量向量的标准。

就好比三原色红、绿、蓝可以组成千变万化的颜色。Do、Re、Mi、Fa、Sol、La、Si七个音符可以编织成无数首动人心弦的音乐。0、1两个数字可以表示计算机中所有的符号。这里边三原色、七个音符、两个数字就是基。每一种混合出来的颜色,每一首音乐和每一个计算机符号都可以看成是一个向量,包含着每个基元素的含量多少。

基可以看成是线性空间里的坐标系。选定一组基就是在线性空间里选定一个坐标系。


2.3D向量与矩阵相乘的几何意义

  3D向量与矩阵相乘表示的含义是一样的,只不过与3D向量相乘的矩阵是影响的x,y,z三个轴。


3.矩阵的几何意义

向量的几何意义是一条有向线段,而且向量可以进行三角形法则,所以我们可以将向量进行拆分成坐标轴的加法或者减法。

矩阵我们可以将每一行元素看做一个向量,它用来表示我们最终向量所对应坐标轴的最终状态,这就是矩阵的几何意义。

向量与矩阵的乘法本质就是坐标的转换,其几何意义就是表示向量拆分后,坐标进行变换,变成矩阵的每一行元素所表示的向量的位置。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容

  • 一前言 特征值 奇异值 二奇异值计算 三PCA 1)数据的向量表示及降维问题 2)向量的表示及基变换 3)基向量 ...
    Arya鑫阅读 10,475评论 2 43
  • 线性代数在科学领域有很多应用的场景,如下: 矩阵,是线性代数中涉及的内容, 线性代数是用来描述状态和变化的,而矩阵...
    zhoulujun阅读 11,952评论 3 44
  • 如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多。”,然而“按照现行的国际标准,线性代数是通过公...
    Drafei阅读 1,532评论 0 3
  • 《百花赞》 楼下小园花簇簇,百花争艳蝶绕园。 疑是游园惊梦处,此处应有花中仙。 《清明思故人》 遥望故居千万里,犹...
    雪卧青岭阅读 165评论 0 0
  • 生日快乐,愿每年的今天你能带着微笑想起-------题记 打开磨损多年的文曲星,想起 奔流多年的过去。 蓝天,白云...
    郭络罗梦阅读 184评论 0 0