iOS中的锁

可以看这篇文章:iOS 常见知识点(三):Lock

什么是锁

锁是一种同步机制,用于在存在多线程的环境中实施对资源的访问限制。

iOS中锁的实现

使用NSLock类

NSLock 遵循 NSLocking 协议,lock 方法是加锁,unlock 是解锁,tryLock 是尝试加锁,如果失败的话返回 NO,lockBeforeDate: 是在指定Date之前尝试加锁,如果在指定时间之前都不能加锁,则返回NO。

- (void)nslockDemo {
    NSLock *myLock = [[NSLock alloc] init];
    _testLock = [[TestLock alloc] init];
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        [myLock lock];
        [_testLock method1];
        sleep(5);
        [myLock unlock];
        if ([myLock tryLock]) {
            NSLog(@"可以获得锁");
        }else {
            NSLog(@"不可以获得所");
        }
    });
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        if ([myLock tryLock]) {
            NSLog(@"---可以获得锁");
        }else {
            NSLog(@"----不可以获得所");
        }
        [myLock lock];
        [_testLock method2];
        [myLock unlock];
    });
}

NSConditionLock

NSConditionLock 和 NSLock 类似,都遵循 NSLocking 协议,方法都类似,只是多了一个 condition 属性,以及每个操作都多了一个关于 condition 属性的方法,例如 tryLock,tryLockWhenCondition:,NSConditionLock 可以称为条件锁,只有 condition 参数与初始化时候的 condition 相等,lock 才能正确进行加锁操作。而 unlockWithCondition: 并不是当 Condition 符合条件时才解锁,而是解锁之后,修改 Condition 的值,这个结论可以从下面的例子中得出。

NSRecursiveLock

NSRecursiveLock 是递归锁,他和 NSLock 的区别在于,NSRecursiveLock 可以在同一个线程中重复加锁(反正单线程内任务是按顺序执行的,不会出现资源竞争问题),NSRecursiveLock 会记录上锁和解锁的次数,当二者平衡的时候,才会释放锁,其它线程才可以上锁成功。

PS:解决了NSLOCK多次上锁造成的死锁问题

NSCondition

NSCondition 的对象实际上作为一个锁和一个线程检查器,锁上之后其它线程也能上锁,而之后可以根据条件决定是否继续运行线程,即线程是否要进入 waiting 状态,经测试,NSCondition 并不会像上文的那些锁一样,先轮询,而是直接进入 waiting 状态,当其它线程中的该锁执行 signal 或者 broadcast 方法时,线程被唤醒,继续运行之后的方法。


@interface NSCondition : NSObject <NSLocking> {
@private
    void *_priv;
}

- (void)wait;
- (BOOL)waitUntilDate:(NSDate *)limit;
- (void)signal;
- (void)broadcast;

@property (nullable, copy) NSString *name NS_AVAILABLE(10_5, 2_0);

@end

@synchorize

对于@synchorize指令中使用的testLock为该锁标示,只有标示相同的时候才满足锁的效果

- (void)synchronizeDemo {
    _testLock = [[TestLock alloc] init];
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        @synchronized (_testLock) {
            [_testLock method1];
            sleep(5);
        }
    });
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        @synchronized (_testLock) {
             
            [_testLock method2];
        }
    });
}

gcd(dispatch_semaphore)

dispatch_semaphore_t signal = dispatch_semaphore_create(1);
    dispatch_time_t overTime = dispatch_time(DISPATCH_TIME_NOW, 3 * NSEC_PER_SEC);
    
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        dispatch_semaphore_wait(signal, overTime);
        sleep(2);
        NSLog(@"线程1");
        dispatch_semaphore_signal(signal);
    });
    

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        dispatch_semaphore_wait(signal, overTime);
        NSLog(@"线程2");
        dispatch_semaphore_signal(signal);
    });

dispatch_semaphore 和 NSCondition 类似,都是一种基于信号的同步方式,但 NSCondition 信号只能发送,不能保存(如果没有线程在等待,则发送的信号会失效)。而 dispatch_semaphore 能保存发送的信号。dispatch_semaphore 的核心是 dispatch_semaphore_t 类型的信号量。

dispatch_semaphore_create(1) 方法可以创建一个 dispatch_semaphore_t 类型的信号量,设定信号量的初始值为 1。注意,这里的传入的参数必须大于或等于 0,否则 dispatch_semaphore_create 会返回 NULL。

dispatch_semaphore_wait(signal, overTime); 方法会判断 signal 的信号值是否大于 0。大于 0 不会阻塞线程,消耗掉一个信号,执行后续任务。如果信号值为 0,该线程会和 NSCondition 一样直接进入 waiting 状态,等待其他线程发送信号唤醒线程去执行后续任务,或者当 overTime 时限到了,也会执行后续任务。

dispatch_semaphore_signal(signal); 发送信号,如果没有等待的线程接受信号,则使 signal 信号值加一(做到对信号的保存)。

从上面的实例代码可以看到,一个 dispatch_semaphore_wait(signal, overTime); 方法会去对应一个 dispatch_semaphore_signal(signal); 看起来像 NSLock 的 lock 和 unlock,其实可以这样理解,区别只在于有信号量这个参数,lock unlock 只能同一时间,一个线程访问被保护的临界区,而如果 dispatch_semaphore 的信号量初始值为 x ,则可以有 x 个线程同时访问被保护的临界区。

OSSpinLock

OSSpinLock 是一种自旋锁,也只有加锁,解锁,尝试加锁三个方法。和 NSLock 不同的是 NSLock 请求加锁失败的话,会先轮询,但一秒过后便会使线程进入 waiting 状态,等待唤醒。而 OSSpinLock 会一直轮询,等待时会消耗大量 CPU 资源,不适用于较长时间的任务。

OSSpinLock出现优先级反转的问题:

具体来说,如果一个低优先级的线程获得锁并访问共享资源,这时一个高优先级的线程也尝试获得这个锁,它会处于 spin lock 的忙等状态从而占用大量 CPU。此时低优先级线程无法与高优先级线程争夺 CPU 时间,从而导致任务迟迟完不成、无法释放 lock。

pthread_mutex

pthread_mutex_t定义在pthread.h,所以记得#include。

- (void)pthreadDemo {
    _testLock = [[TestLock alloc] init];
     
    __block pthread_mutex_t mutex;
    pthread_mutex_init(&mutex, NULL);
     
    //线程1
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        pthread_mutex_lock(&mutex);
        [_testLock method1];
        sleep(5);
        pthread_mutex_unlock(&mutex);
    });
     
    //线程2
    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(1);
        pthread_mutex_lock(&mutex);
        [_testLock method2];
        pthread_mutex_unlock(&mutex);
    });
}

性能对比

耗用时间: synthorize > NSLock > pthread > gcd

synthorize内部会添加异常处理,所以耗时。
pthread_mutex底层API,处理能力不错。
gcd系统封装的C代码效果比pthread好。

总的来说:
OSSpinLock和dispatch_semaphore的效率远远高于其他。
@synchronized和NSConditionLock效率较差。
鉴于OSSpinLock的不安全,所以我们在开发中如果考虑性能的话,建议使用dispatch_semaphore。
如果不考虑性能,只是图个方便的话,那就使用@synchronized。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,088评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,715评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,361评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,099评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 60,987评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,063评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,486评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,175评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,440评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,518评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,305评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,190评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,550评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,880评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,152评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,451评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,637评论 2 335

推荐阅读更多精彩内容

  • 锁是一种同步机制,用于多线程环境中对资源访问的限制iOS中常见锁的性能对比图(摘自:ibireme): iOS锁的...
    LiLS阅读 1,495评论 0 6
  • 在平时的开发中经常使用到多线程,在使用多线程的过程中,难免会遇到资源竞争的问题,那我们怎么来避免出现这种问题那? ...
    IAMCJ阅读 3,069评论 2 25
  • 本文不介绍各种锁的高级用法,只是整理锁相关的知识点,帮助理解。 锁的作用 防止在多线程(多任务)的情况下对共享资源...
    HelloiWorld阅读 2,874评论 0 8
  • 抛砖引玉 说到锁不得不提线程安全,说到线程安全,作为iOS程序员又不得不提 nonatomic 与 atomic ...
    Inlight先森阅读 2,030评论 0 23
  • 致敬生命的歌者 郭相麟 出生在六七十年代的朋友,对一代歌后邓丽君的名字,恐怕不会陌生! ...
    郭相麟阅读 141评论 0 0